5 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Защита от перенапряжения сети

Содержание

Защита от перенапряжения в сети

Защита от перенапряжения — это функция источника питания, которая отключает оборудование, когда напряжение превышает заданный параметр. Перенапряжения могут возникать в самом источнике или в распределительных сетях и длиться всего несколько миллисекунд, однако даже столь недолговременное проявление электромагнитных воздействий на бытовые приборы губительно, особенно для электронного оборудования, содержащего полупроводниковые компоненты.

Причины возникновения аварийных ситуаций в бытовой электросети

Основные факторы перегрузок в сети 220 и 380 Вольт:

  • грозовые разряды, молнии — самые высокоэнергетические явления на Земле;
  • неправильная эксплуатация оборудования и низкий уровень квалификации персонала электросети;
  • нарушение правил техники безопасности при эксплуатации электроустановок, в результате чего у потребителя будет не 220 В, а 380 В или менее 110 В;
  • искра статического электричества;
  • обрыв нулевого провода;
  • импульсное напряжение из-за попадания грозы в линию электропередач;
  • перепады тока в сети из-за одновременного включения большого количества приборов и оборудования.

Последствия перенапряжения в сети

Воздействие состояния перенапряжения может полностью вывести из строя электрооборудование, вызывать сбои в работе устройств, привести к пожарам, а порой и к взрывам. По количеству случаев второе место в стране занимают пожары, вызванные перенапряжениями в сети, когда ток мгновенно растет до сотни тысяч ампер, резко выделяется огромное количество тепла в электропроводке или приборах, с последующим воспламенением их изоляции или пластмассовых изделий.

Перепады напряжения губительно влияют на все бытовые электроприборы, защитить их можно только применяя специальное устройство защиты от перенапряжения.

Виды защитных устройств

Для борьбы с сетевыми перепадами напряжения существует много различных устройств, которые легко установить самостоятельно. Изделия помогают максимально эффективно защитить свой дом и близких людей от аварийных ситуаций, вызванных перенапряжением сети.

Существует несколько видов защитных устройств от перенапряжения:

  1. Стабилизатор напряжения — контролирует размер сетевого напряжения.
  2. Источник бесперебойного питания (ИБП) — устройство аварийного поддержания работоспособности оборудования при отключении основного источника, выполнен по принципу резервного аккумулятора. ИБП все же отличается от автономной системы питания, так как обеспечивает молниеносную защиту, питая прибор от энергии батарей. Время аварийной работы ИБП очень короткое (несколько минут), но этого достаточно для запуска другого источника или правильного отключения приборов от сети.
  3. Автоматический выключатель – электрическое устройство с функциями, аналогичными функции плавкого предохранителя. Защита от перенапряжения сети самых простых выключателей обеспечивается соленоидом, который активируется чрезмерным увеличением тока. Малые автоматические выключатели широко используются вместо плавких предохранителей для защиты электрических систем в домах и квартирах.
  4. Сетевой фильтр – защитное устройство со встроенной электронной схемой защиты от импульсных, низко- и высокочастотных сетевых помех путем их сглаживания.
  5. Ограничитель перенапряжения нелинейный (ОПН) — устройство, защищающее оборудование от коммутационных перенапряжений и молний, является лучшим средством защиты.
  6. Трансформаторы (понижающие и повышающие) — изменяют напряжение до рабочего, когда в сети наблюдается регулярная просадка или подъем напряжения, из-за чего приборы не могут функционировать в полную силу.
  7. Устройства защитного отключения (УЗО) — наиболее распространенные средства защиты людей от опасности удара электрическим током при касании устройств и оборудования под напряжением, а также для защиты от пожара, вызванного токами утечки. Другие средства защиты эти функции выполнять не могут, так как реагируют только на перегрузку сетей.

Источники возникновения импульсных помех

Импульсная помеха (ИП) создается мгновенным всплеском напряжения в электросети с амплитудой более 4–6 тыс. В. ИП бывают в виде одиночного или множества (пачки) чередующихся импульсов. Это самая распространенная «болезнь» электросетей и наносит непоправимый вред электронным компонентам бытовой техники. Защита от ИП — питание оборудования с помощью сетевых фильтров. Другие системы защиты электрооборудования практически не настроены на защиту от ИП, поэтому не могут ее обеспечить.

Различают источники ИП:

  1. Природные источники — удары молний поблизости с электросетями (воздушными или подземными), зона действия до 20 км.
  2. Техногенные источники — процессы коммутации в период оперативного управления системами электропередач (включения/выключения) и аварийных ситуаций на трансформаторных подстанциях.

Согласно оперативным данным, наиболее часто встречаются ИП техногенного характера, что объяснимо уровнем изношенности сетей и большой потребительской нагрузкой.

Классы безопасности оборудования по защите от ИП

В зависимости от мощности импульса, оборудование по защите от ИП делится на классы:

  • молниезащита — 0 (А);
  • вводный щит для сооружения I (B);
  • электрощиты для помещений — II (C);
  • оборудование по ГОСТ- III (D).

Устройство защиты от импульсных перенапряжений (УЗИП)

Различают УЗИП — варисторы и разрядники различных конструкций, обычно имеющие индикаторы, подающие сигнал об отключении. Варисторы обладают определенными недостатками: после срабатывания они должны остыть, что снижает уровень готовности грозозащиты при неоднократных ударах молний. Они крепятся на DIN-рейку, поэтому их легко заменить в случае необходимости.

Защита от перенапряжения и надежность применения устройства зависит от эффективности заземления с равными потенциалами TN-S или TN-CS, разделением защитного и 0-провода. УЗИП устанавливают с шагом 10 м по кабелю, чем обеспечивается расчетная последовательность срабатывания УЗИП.

На воздушных линях УЗИП устанавливается из разрядников и плавких вставок, в общем домовом щитке — варисторы кл. I, II, а на этажах — III кл. При необходимости дополнительной защиты розетки оборудуют в виде сетевых удлинителей.

Устройство защиты от скачков напряжения 220 вольт для дома

Защита от перенапряжения 220 В – это та задача, которую придется решать самим: думать головой и собирать защиту собственными руками. Современная бытовая и вычислительная техника безопасно работает от 190 до 240 В. Скачок напряжения создает разрушительные последствия для техники, когда напряжение мгновенно увеличивается в разы и резко падает.

Наиболее распространенные причины перенапряжения:

  • одновременное отключение/включение большого количества приборов;
  • повреждение 0-провода;
  • попадание молнии в ЛЭП;
  • обрыв провода внешним объектом;
  • нарушения схемы подключения проводов в щите.

Промышленность выпускает большой список приборов, способных достаточно надежно обеспечить защиту от перенапряжения сети 220 В, бытовых приборов — от повреждения и высоких параметров сети:

  1. РКН (реле контроля напряжения) устанавливаются, когда перепады напряжения — явление редкое. РКН – прибор, отключающий электрическую цепь при изменении разности потенциалов и включающий, когда параметры сети нормализуются, должен иметь собственную мощность, превышающую общую мощность подключенного оборудования.
  2. ДПН (датчик перепадов напряжения) срабатывает при изменении разности потенциалов. ДПН вызывает утечку тока, ее обнаруживает уже другой автомат – УЗО, он же и отключает сеть.

Стабилизаторы напряжения

Для нормальной эксплуатации электрического оборудования напряжение должно поддерживаться в диапазоне от 190 В и до 240 В. Защита от импульсных перенапряжений происходит при превышении допустимых параметров, например вызванных сварочными работами, выполняемыми недалеко от дома, или появлениями тока короткого замыкания в общей домовой электросети. В этом случае стабилизатор мгновенно отключает электричество. После стабилизации сети защитное устройство самостоятельно подает напряжение на приборы потребителя.

Сетевые фильтры

Если фильтр не может справиться с помехами, то он отключает питание встроенным предохранителем. Защита от перенапряжения применяется для бытовых многоуровневых компьютерных сетей. Схема сетевого фильтра обеспечивает один из самых простых, дешевых и эффективных способов защиты от перенапряжения. Обычно это связано с регулируемым выходом и защищенным контуром или нагрузкой. СФ, функционирующие на базе транзистора, управляют выходным током и напряжением. Устройство защиты отключает оборудование, когда напряжение превышает заданное значение.

Защита от перенапряжения с использованием разрядников

Грозовые, квазистационарные и коммутационные перенапряжения воздействуют на работоспособность электрооборудования. Основные защитные устройства — РВ (вентильные разрядники) и ОПН (нелинейные ограничители перенапряжений). Надежность их работы зависит от:

  • Выбора числа устройств, их параметров и места расположения.
  • Внутренней защиты от перенапряжений самого разрядника, который не защищен от такого вида воздействия.
  • Испытаний в нормальных условиях, они не должны пробиваться.

Разрядники для защиты от перенапряжений (варистор) состоят из резистора и искрового просвета, соединенных последовательно. Такая схема подключения меняет характеристики во влажной среде, поэтому их герметично закрывают. Этот вид разрядников срабатывает бесшумно и не дает выбросов газа и пламени.

Явление перенапряжения в наших сетях не редкость, системы электроснабжения устарели, так как не рассчитаны на современный возросший бытовой уровень жизни потребителей. Раздувшиеся нагрузки потребления электричества разрушают изношенные сети, в результате чего перепады напряжения случаются все чаще и чаще.

Читать еще:  Рассказ о себе для работы

Подводя итог, следует сказать, что методы защиты от перенапряжения, конечно, рассчитаны на защиту от поражения высоким напряжением оборудования и людей, но не дают гарантии на 100%. Во время грозы и коммутационных явлений в сети лучшая защита всегда — это полное отключение от электросети дорогостоящего оборудования.

Защита сети 220 вольт от перенапряжения — как защитить электроприборы в вашем доме?

Хотя подача электричества в квартиры и дома регулируется законодательством, жильцам не стоит полностью рассчитывать на то, что соответствующие службы обеспечат подачу электроэнергии нужного качества. Если из-за бросков сетевого напряжения дорогостоящие электроприборы выйдут из строя, получить компенсацию будет практически невозможно. А поскольку неполадки на электролиниях – не редкость, то стоит самостоятельно принять меры, которые помогут уберечь бытовую технику от поломки. Для этого нужна защита от перенапряжения, обеспечить которую можно, установив в сети соответствующий прибор – защитное реле, датчик с УЗО или стабилизатор напряжения.

Допустимые параметры электроэнергии

Номинал напряжения, обозначенный на всей бытовой электротехнике, составляет 220В, однако в реальной жизни это значение стабильно далеко не всегда. Это учитывается при изготовлении современных приборов, и они могут устойчиво работать при колебании напряжения от 209 до 231В, а также переносить разброс от 198 до 242В. Если бы небольшие перепады разности потенциалов не были предусмотрены конструкцией бытовой техники, она ломалась бы постоянно. Более значительные отклонения приводят к перегрузке сети, и это снижает эксплуатационный ресурс аппаратуры.

Чтобы сгладить колебания напряжения и обеспечить безопасность приборов, достаточно установить стабилизатор. Гораздо опаснее для электротехники перенапряжение (так называется резкий скачок разности потенциалов).

Разновидности перенапряжений

Перенапряжение может длиться как короткое, так и достаточно продолжительное время. Оно может быть вызвано ударом молнии во время грозы или коммутацией, возникшей из-за неполадок подстанции. Для защиты от них в сеть 220 или 380 Вольт (бытовую или промышленную) включается УЗИП (устройство защиты от импульсных перенапряжений). Его автоматическое срабатывание помогает обезопасить линию при воздействии, например, мощного грозового разряда, от которого не сможет спасти стабилизатор напряжения.

Наглядно про УЗИП на видео:

Удар молнии приводит к появлению мощного электромагнитного импульса, под влиянием которого в расположенных рядом с местом разряда проводниках возникают электрические потенциалы, и происходит резкий скачок напряжения. Длится он всего около 0,1 с, но величина разности потенциалов при этом составляет тысячи вольт.

Понятно, что при поступлении такого напряжения в домашние и производственные сети последствия могут быть очень тяжелыми.

Перенапряжение в результате коммутации

Такое явление может произойти при включении в линию или выключении приборов, дающих высокую индуктивную нагрузку. К ним относятся блоки питания, электромоторы, а также мощные инструменты, запитывающиеся от сети.

Этот эффект обусловлен законами коммутации. Моментальное изменение величины тока в соленоиде, а также разности потенциалов на конденсаторе произойти не может. Когда цепь с такой нагрузкой соединяется или размыкается, то в месте контакта отмечается появление вызванного самоиндукцией и коммутационными процессами электрического потенциала.

Течение переходного процесса всегда сопровождается выбросом напряжения, которое обладает полярностью, обратной входному. Небольшая емкость проводников в сети вызывает резонанс, длящийся короткое время и вызывающий высокочастотные колебания. По завершении переходного процесса они затухают.

Сколько продлится перенапряжение и какова будет его величина, зависит от следующих показателей:

  • Индуктивность нагрузки.
  • Моментальное значение разности потенциалов при коммутации.

  • Емкость подключающих электрических кабелей.
  • Реактивная мощность.

Опасность перенапряжения

Поскольку изоляция проводов рассчитана на величину напряжения, значительно превышающую номинал, пробоя чаще всего не случается. Если электроимпульс действует в течение незначительного времени, то напряжение на выходе блоков питания со стабилизатором не успевает возрасти до критического показателя. Это же касается и обычных лампочек – если резко возросшее напряжение быстро нормализуется, то спираль не успевает не только перегореть, но даже перегреться.

Если же изоляционный слой не выдерживает увеличившегося напряжения и происходит его пробой, то появляется электрическая дуга. В этом случае поток электронов проникает сквозь микротрещины, возникшие в изоляции, и идет через газы, которыми наполнены образовавшиеся мельчайшие пустоты. А большое количество тепла, выделяемое дугой, способствует расширению токопроводящего канала. В итоге нарастание тока происходит постепенно, и автомат защиты срабатывает с некоторым опозданием. И хотя оно занимает всего несколько мгновений, их оказывается вполне достаточно для выхода электропроводки из строя.

Какими устройствами обеспечивается защита сети от перенапряжения?

Схема защиты электрической линии от скачков напряжения может включать в себя:

  • Систему молниезащиты.
  • Стабилизатор напряжения.
  • Датчик повышенного напряжения (устанавливается вместе с УЗО).
  • Реле перенапряжения.

Отдельно нужно сказать о блоках бесперебойного питания, через которые в домашних сетях чаще всего подключают компьютеры. Этот прибор не предназначен для защиты от перенапряжения в сети. Его функция заключается в другом: при внезапном отключении света он работает как аккумулятор, позволяя пользователю сохранить информацию и спокойно выключить ПК. Поэтому путать его со стабилизатором напряжения не следует.

Принцип работы защитных устройств

Для защиты от электроимпульсов, возникающих под действием молнии, устанавливается грозозащитный разрядник вместе с УЗИП. А обезопасить линию от потока электронов, параметры которого не соответствуют рабочим характеристикам сети, можно с помощью специальных датчиков, а также реле перенапряжения.

Следует сказать, что как ДПН, так и реле по принципу действия и назначению отличаются от стабилизатора.

Задача этих элементов состоит в том, чтобы прекратить подачу электроэнергии в случае превышения величиной перепада максимального порога, указанного в техническом паспорте средства защиты или выставленного регулятором.

После нормализации параметров электрической линии происходит самостоятельное включение реле. ДПН для защиты линии следует устанавливать только в паре с устройством защитного отключения. Его задача заключается в том, чтобы при обнаружении неполадок вызвать утечку тока, под воздействием которой сработает УЗО.

Наглядно про реле напряжения на видео:

Недостаток такой схемы заключается в необходимости ее ручного включения после того, как напряжение придет в норму. В этом плане выгодно отличается стабилизатор напряжения. Это устройство предусматривает регулируемую временную задержку токоподачи, если происходит его срабатывание под воздействием чрезмерного напряжения. Стабилизатор часто используют для подключения кондиционеров и холодильных аппаратов.

Длительные перенапряжения

Продолжительные перенапряжения очень часто происходят из-за обрыва нулевого проводника. Неравномерность нагрузки на фазных жилах становится причиной перекоса фаз – смещения разности потенциалов к проводнику с самой большой нагрузкой.

Иначе говоря, под воздействием неравномерного трехфазного электротока на нулевом кабеле, не имеющем заземления, начинает скапливаться напряжение. Ситуация не нормализуется до тех пор, пока повторная авария окончательно не выведет линию из строя или специалист не устранит неисправность.

При обрыве нулевого провода в электророзетке будет происходить изменение напряжения в соответствии с нагрузкой, которую пользователи, не знающие о неполадках, будут подключать на различные фазы. Пользоваться неисправной цепью практически невозможно, даже если в линию питания включен хороший стабилизатор. Дело в том, что сетевые параметры, регулярно выходящие за пределы стабилизации, приведут к тому, что прибор будет постоянно выключаться.

Наглядно про обрыв ноля и что нужно при этом делать – на видео:

Недостаток напряжения (провал)

Это явление особенно хорошо знакомо людям, проживающим в деревнях и селах. Провалом (проседанием) называется падение величины напряжения ниже допустимого предела.

Опасность проседаний заключается в том, что в конструкцию многих бытовых приборов входит несколько блоков электропитания, и недостаток напряжения приведет к тому, что один из них кратковременно выключится. Аппарат среагирует на это выдачей ошибки на дисплее и остановкой работы.

Если речь идет об отопительном котле, а неисправность произошла в зимнее время, то дом останется без отопления. Избежать такой ситуации поможет подключение стабилизатора. Этот прибор, зафиксировав проседание, повысит величину напряжения до номинала. Стабилизатор может спасти ситуацию, даже если напряжение в сети упало по вине трансформаторной подстанции.

Заключение

В этой статье мы рассказали, для чего нужна защита от перенапряжения в сети, какими устройствами она обеспечивается и как правильно ими пользоваться. Приведенные рекомендации помогут читателям разобраться в причинах сбоя сетевого напряжения, а также выбрать и установить устройство для защиты электросети.

Способы защиты электрической сети квартиры или дома от скачков напряжения

Перепады напряжения и прочие неполадки в электросетях отнюдь не редкость. Они могут привести к выходу из строя дорогостоящей техники и даже угрожать жизни и здоровью людей. Для предотвращения подобных последствий на рынке имеются различные устройства защиты электрической сети, применяемые в зависимости от характера неполадок.

В этой статье вы узнаете: что собой представляют перепады напряжения и каковы их причины; Какие существуют устройства защиты сети и в каких случаях используются.

Допустимые параметры электроэнергии

В России и на пост-советском пространстве стандартным напряжением является 220 вольт (для рядовых потребителей электроэнергии). При этом в реальности напряжение колеблется в определенных рамках от данного номинала. Допустимая амплитуда отклонения от нормы устанавливается нормами и актами, регулирующими предоставление данной услуги потребителю. При 220В минимальное допустимое значение составляет 198В, а максимальное — 242В.

Спасут ли пробки или автоматы?

Долгое время в домах использовались «пробки»: плавкие предохранители, защищающие от скачков напряжения. На смену им пришли современные и более удобные автоматы (автоматические выключатели). На сегодняшний день в большинстве квартир это единственные средства защиты от неполадок в сети.

Пробки и автоматические выключатели позволяют защититься от короткого замыкания, перегрева проводки и возгорания при перегрузке. Однако мощный электрический импульс может успеть пройти через автомат и вывести технику из строя. Такое случается, например, в следствие удара молнии. То есть обычные пробки не могут обеспечить полноценную защиту от перепадов напряжения.

Основные причины возникновения скачков напряжения в сети

Скачки напряжения могут отличаться по величине отклонения от нормы, по своей продолжительности и динамике возрастания/убывания в зависимости от причин их возникновения:

  • Большая нагрузка на сеть. Одновременное подключение большого числа электроприборов при недостаточной мощности сети приводит к нестабильности напряжения. Это может быть заметно, например, как мерцание лампочек или внезапное выключение электроприборов. Данное явление встречается часто, особенно по вечерам;
  • Мощный потребитель по соседству. Случается, если рядом находятся промышленные объекты, торговые центры, офисные здания с мощной вентиляционной системой и так далее.
  • Обрыв нулевого провода. Нулевой провод выравнивает напряжение у потребителей электроэнергии. При его обрыве (сгорании, окислении) часть потребителей получат повышенное напряжение (а другие заниженное), что с высокой вероятностью приведет к выходу из строя незащищенной электротехники.
  • Ошибки при подключении. Например, если были перепутаны нулевой и фазный провода;
  • Плохая проводка. Сбои возникают из-за изношенности проводки, использования некачественных материалов и неправильно выполненных монтажных работ.
  • Удар молнии. Попадание молнии в линии электропередачи может вызывать стремительный скачек напряжения в тысячи вольт. Представляет особую опасность, так как средства защиты не всегда успевают сработать.
Читать еще:  Как написать претензию в банк образец

Возможные последствия скачков напряжения

Производители электрической техники учитывают нестабильный характер напряжения и возможность его скачков и падений. Например, прибор с номинальным напряжением 220 вольт может работать при 200В и выдерживать скачки до 240В. При этом регулярная работа аппаратуры при больших отклонения от нормы сокращает срок ее эксплуатации. Сильные скачки напряжения могут вывести технику из строя, и даже нанести ущерб имуществу и здоровью, например, вызвав пожар.

Справка. Поломки электрических приборов в результате скачков напряжения не покрываются договорами о гарантийном обслуживании, то есть бремя расходов на ремонт и замену ложится на владельца, что может стать серьезным ударом по семейному бюджету. В некоторых случаях существует возможность предъявления иска к поставщику электроэнергии, однако это долго, сложно и дорого, а также не гарантирует успеха. Проще заранее предусмотреть защиту своего дома от подобных неприятностей.

Способы защиты от скачков напряжения

В зависимости от характеристик скачка напряжения и природы его возникновения используются различные устройства защиты. Рассмотрим основные из них:

Сетевой фильтр

Простое и доступное решение для защиты маломощного оборудования. Обычно представляет собой удлинитель или моноблок с вилкой, розеткой (или розетками) и выключателем с индикацией подачи питания. Следует отличать сетевые фильтры от обычных удлинителей, которые не имеют защиты, но очень похожи по виду. Защищает от скачков до 400 — 500 вольт, а ток нагрузки не может превышает 5 — 15 А.

Справка. С технической стороны сетевой фильтр представляет собой нехитрую систему из нескольких конденсаторов и катушек индуктивности. При этом блоки питания большинства современных электроприборов уже имеют в своем составе схемы, выполняющие аналогичную функцию. То есть на практике сетевые фильтры часто выполняют роль простого удлинителя с дополнительной защитой от скачков в сети.

Реле защиты РКН и УЗМ

Устройство прерывает подачу электроэнергии, если напряжение выходит за пределы допустимых значений. После возвращения напряжения в установленные рамки подача восстанавливается (автоматически или в ручную в зависимости от модели). Устройство подключается после входного автомата.

Основные достоинства РКН и УЗМ:

  • Скорость срабатывания в несколько миллисекунд;
  • Выдерживает нагрузку от 25 до 60 А;
  • Небольшие размеры и удобный монтаж;
  • Достаточные диапазоны максимального и минимального напряжения;
  • Отображение показателей электрического тока в реальном времени;

Прибор эффективен для защиты от разрыва нулевого провода и умеренных скачков напряжения. Однако реле не могут обеспечить стабильное напряжение и защитить от импульсного скачка, вызванного ударом молнии.

Расцепитель минимального-максимального напряжения (РММ)

Устройство защищает от высокого и низкого напряжения. Эффективен в случае разрыва нулевого провода и перекоса фаз в трехфазной сети, но не защищает от высоковольтных импульсов.

Прибор отличается небольшими размерами, простотой установки и доступной ценой.

Обратите внимание. РММ не оснащен функцией автоматического включения, что может привести к порче продуктов в холодильнике, остановке отопления помещений в зимний период и подобным проблемам.

Стабилизаторы

Приборы используются для «сглаживания» подачи электроэнергии в сетях, склонных к нестабильной работе. Эффективны в случае падения мощности, но могут не справиться с высоким напряжением.

К достоинствам прибора относятся: длительный срок эксплуатации; быстрое срабатывание; поддержание напряжения на стабильном уровне. Главным недостатком стабилизаторов является высокая цена.

Устройства защиты от импульсных перенапряжений (УЗИП)

Используются для защиты от быстрых мощных скачков напряжения, как правило вызываемых ударом молнии в линию электропередач. Выделяют два вида подобных устройств:

  • Вентильные и искровые разрядники. Устанавливаются в сетях высокого напряжения. В случае импульсного перенапряжения в устройстве происходит пробой воздушного зазора, фаза замыкается на заземление, разряд уходит в землю;
  • Ограничители перенапряжения (ОПН). В отличие от разрядников имеют небольшой размер и используются в частных домах. Внутри установлен варистор. При обычном напряжении ток через него не течет, но в случае скачка происходит возрастание тока, что позволяет снизить напряжение до нормальной величины.

Датчик повышенного напряжения (ДПН)

Используется вместе с УЗО (устройство защитного отключения) или дифференциальным автоматом. ДПН определяет превышение установленной нормы напряжения, после чего УЗО размыкает цепь.

Заключение

Наиболее распространенные средства защиты от скачков напряжения: автоматы и пробки, — эффективны не во всех случаях. В частности они не справляются с мощными скачками напряжения, что ставит под угрозу сохранность электротехники и всего дома в целом. Рынок предлагает разнообразными устройствами защиты электросети, применяемые в зависимости от характера перепадов напряжения и причин их возникновения. Потребителям электроэнергии остается выбрать необходимые приборы и правильно их установить.

Защита от перенапряжения в частном доме

Довольно часто происходят поломки электрической бытовой техники, ведь любой электротехнический агрегат при создании рассчитывается на работу с определенным уровнем электроэнергии, т.е. на конкретные показатели силы и напряжения тока в сетях подключения. Поэтому при превышении этих норм может случиться аварийная ситуация.

Использование дорогостоящей домашней техники, агрессивные природно- атмосферные явления, не слишком высокий уровень прокладки линий электропередач делает жизненно необходимым для собственников квартир и домов принятие мер по защите от перенапряжения электросетей в частном доме и минимизации возможных последствий.

Откуда возникает перенапряжение

Планировка и строительство многих многоэтажек еще пару десятков лет назад производилась без прицела на сегодняшнее многообразие бытового электрооборудования: микроволновки, многокамерные холодильники, утюги высокой мощности и другие приборы, имеющие электрическое питание. Поэтому максимумы потребления электричества по утрам и вечерам пагубно влияют на работу всей электросети в любом жилище.

Электричество, текущее по кабелю или проводу, неспособному выдерживать такую нагрузку, способствует их ненормальному нагреву в дневные часы и охлаждению в вечерние. В силу законов физики, проводник ослабевает, поскольку он делается то шире, то уже. Контакты в щитке на первых этажах или в едином вводно-распределяющем устройстве в доме заметно ослабевают. Также нулевые контакты могут отгореть, что приводит к перепаду напряжения от 110 до 360 вольт на всех этажах, выше этажа с перегоревшими контактами.

Перенапряжение в электросети может произойти в результате попадания молниевого разряда в линию электропередач, подстанцию или элементы дома, при этом сила тока просто огромная, порядка 200 килоампер. При попадании в молниеприемник и дальнейшем прохождении молнии по контуру заземления в проводниковых материалах возникает электродвижущая сила, измеряемая в киловольтах.

Также вызвать резкий скачок напряжения могут сварочные работы или одновременное включение многими соседями электроприборов или подключение/отключение мощного потребителя. Для защиты дорогостоящей электротехники и всего частного дома необходима защита от перенапряжения в сети.

Особенности защиты домашней электропроводки

Организация защиты от возникающего высокого напряжения – один из ключевых вопросов при прокладке электросети в жилом доме. Осуществляется она с помощью особых трансформаторов и фильтров сети. Во многих домах на этажных щитках устанавливаются автоматические выключатели, которые защищают от электротоков при коротком замыкании и временных перегрузок.

Когда возможна высокая нагрузка, все устройства, защищающие сети от повышенного напряжения, должны иметь приспособления для автоотключения и выключатели, реагирующие на изменения показателей тока. Как правило, самая надежная защита от подобных скачков ставится на входном силовом проводе, поскольку именно он испытывает наибольшее воздействие во время пиков нагрузки.

Схема защиты от перенапряжения домашней электросети бывает простой и многоуровневой. Простая – представлена в основном реле перенапряжения в этажных щитках, а многоступенчатая (комбинированная, защищающая как от бытовых скачков напряжения, так и от импульсных, при грозах) – УЗИП, т.е. устройства защиты от импульсных перенапряжений. Такие устройства наиболее часто встречаются в частных домах.

Обратите внимание! Электронные приборы выходят из строя как из-за повышенного, так и из-за пониженного напряжения в сети (например, холодильники тяжело запускаются, что негативно сказывается на их дальнейшей работе).

Изоляционные слои домашних электросетей рассчитаны, как правило, на стандартные 220в, поэтому, если напряжение возрастает многократно, в диэлектрическом слое проскакивает искра, которая может спровоцировать электродугу и дальнейшее возгорание.

Чтобы не допустить негативных последствий, применяют следующие защиты, функционирующие по таким принципам:

  • при резком внеплановом повышении напряжения происходит отключение электросхемы в доме или в квартире;
  • вывода полученного сверхнормативного электрического потенциала от электроприборов путем перевода его в земляной контур.

Если напряжение поднимается незначительно (например, до 380 вольт), на помощь приходят различные стабилизаторы. Однако их защитные возможности довольно ограничены – они больше рассчитаны на поддержание заданных рабочих значений в электросетях.

При проектировании защиты для частного дома рассматривают различные конструкционные решения и их технические характеристики. Необходимо учитывать принципы формирования базы ограничителей перенапряжения (опн). Например, газонаполненные разрядники после того, как импульс прошел, пропускают через себя т.н. сопровождающий ток, напряжение которого сопоставимо с коротким замыканием. По этой причине они сами могут быть источником возгорания, и их нельзя применять для защиты от электрического пробоя.

Для домашних сетей чаще всего применяют варисторное устройство защиты (полупроводниковые резисторы) – реостаты, скомпанованные из варисторных «таблеток» из смеси оксидов цинка, висмута, кобальта и других. При штатном функционировании электросети такой автомат защиты допускает микроскопические утечки, а при проходе импульса повышенной вольтажности – способен мгновенно перестроиться на режим «туннеля» и «спустить» больше тысячи ампер за очень короткий промежуток времени, поскольку сопротивление на этом приспособлении снижается с возрастанием силы тока, после чего происходит быстрое возвращение к штатной «боевой готовности».

Читать еще:  Понятие цель и задачи административного судопроизводства

Классы стойкости электропроводки

Все электроприборы в бытовых зданиях разделяется по четырем основным категориям, в зависимости от максимально выдерживаемого перенапряжения:

  • IV категория – до 6 киловольт;
  • III категория – до 4 киловольт;
  • II категория – до 2,5 киловольт;
  • I категория – до 1,5 киловольт.

В соответствии с этими категориями выстраивается система защиты, которая сокращенно называется узо (устройство защитного отключения) с защитой от перенапряжения, в целях маркетинга их чаще всего называют ограничителями, используют и другие наименования. Ограничители монтируются по ходу движения возможного импульса. Так, на участке от вводного щитка идет 6-киловольтный импульс, в первой зоне он снижается ограничителем перенапряжения до 4 киловольт, в следующей зоне он падает до 2,5 киловольт, а в жилой зоне с помощью УЗИП III категории потенциал импульса снижают до 1,5 киловольт. Устройства защиты всех классов функционируют в комплексе, последовательно понижая потенциал до нормальных значений, с которыми легко справляется изоляция домашней электропроводки.

Важно! При неисправности хотя бы одного из звеньев этой защитной цепочки может возникнуть электропробой в изоляции, что приведет к выходу конечного электроприбора из строя. Поэтому необходимо периодически проверять исправность каждого элемента устройств защитного отключения.

Основные устройства системы защиты

Один из лучших способов спасти электросеть от скачков напряжения – монтаж стабилизатора, подходящего по техническим характеристикам. Это недешевые устройства, и не всегда они используются, поскольку напряжение в сетях и так бывает достаточно стабильным.

Также устранить нестабильность в работе сети помогают реле контроля напряжения. При обрыве нулевой жилы и замыкании в провисших кабелях такое реле способно включить защитные функции даже быстрее стабилизатора, нужно лишь 2-3 миллисекунды.

Такие реле очень компактны – для монтажа они требуют меньше места, чем стабилизаторы, легко ставятся на простейшую din-рейку, кабеля подключаются элементарно (в отличие от монтажа стабилизаторов, когда вынужденно вклиниваются в электросеть или устанавливают особый короб для него). Стабилизаторы заметно гудят, поэтому в жилых помещениях их устанавливать нежелательно, а вот реле работают практически бесшумно. Кроме того, аппараты, контролирующие разность электрических потенциалов, потребляют очень мало электричества. Цена на такие реле в несколько раз ниже тех, что сложились на стабилизаторы.

Принцип работы реле контроля состоит в том, что при постоянном поступлении электротока устройство определяет разность потенциалов и сравнивает ее с допустимыми значениями. Если показатели в норме, ключи остаются открытыми, и ток продолжает течь по сети. Если же проходит мощный импульс, происходит моментальное закрытие ключей и отключение подачи электроэнергии потребителям. Такая быстрая и однозначная реакция помогает обезопасить все подключенные бытовые агрегаты.

Дополнительная информация. Возвращение в штатный режим происходит с некоторой задержкой, регулируемой таймером. Это необходимо для того, чтобы крупные электроприборы, такие как холодильники, кондиционеры и другие, включились с соблюдением правил и технической настройкой.

Подключение реле производится по фазному кабелю, при этом нуль-кабель включается во внутреннюю схему для питания энергией.

Имеется два способа: сквозное подключение (по прямой) или с использованием прибора – контрактора для коммуникации. Оптимально подключать релейный механизм до подключения счетчика, чем обеспечится и его защита от перенапряжения. Однако, при наличии на приборе учета пломбы придется монтировать реле за ним.

Импульсные перенапряжения в электросети частных домов возникают из-за грозы с молниями или коммутационных скачков. Для безопасности электропроводки применяются специальные устройства УЗИП. Как правило, это ограничители перенапряжений нелинейные (ОПН), стабилизаторы и реле контроля потенциалов. Конечно, обустройство такой системы – мероприятие затратное, однако его стоимость гораздо ниже дорогих электробытовых приборов.

Видео

Обзор устройств для защиты от перенапряжения в сети

В современных бытовых приборах используется чувствительная электроника, что делает эти устройства уязвимыми перед перепадами напряжения. Поскольку устранить их не представляется возможным, необходима надежная защита. К сожалению, ее организация не входит в сферу обязанностей службы ЖКХ, поэтому заниматься этим вопросом приходится самостоятельно. Благо защитные устройства приобрести сегодня не проблема. Прежде чем перейти к описанию и принципу действия таких приборов, кратко расскажем о причинах, вызывающих скачки напряжения, и их последствиях.

Что такое перепад напряжения и его природа?

Под этим термином подразумевается краткосрочное изменение амплитуды напряжения электросети, с последующим восстановлением, близким к первоначальному уровню. Как правило, длительность такого импульса исчисляется я миллисекундами. Существует несколько причин для его возникновения:

  1. Атмосферные явления в виде грозовых разрядов, они способны вызвать перенапряжение в несколько киловольт, что не только гарантированно выведет электроприборы из строя, а и может стать причиной пожара. В данном случае жителям многоэтажек проще, поскольку организация защиты от таких предсказуемых явлений входит в обязанности поставщиков электричества. Что касается частных домов (особенно с воздушным вводом), то их жильцы должны самостоятельно заниматься этим вопросом или обращаться к специалистам.
  2. Скачки при коммутационных процессах, когда происходит подключение-отключение мощных потребителей.
  3. Электростатическая индукция.
  4. Подключение определенного оборудования (сварка, коллекторный электродвигатель и т.д.).

На рисунке ниже наглядно продемонстрирована величина грозового (Uгр) и коммутационного импульса (Uк) по отношению к номинальному напряжению сети (Uн).

Грозовой и коммутационный импульсы перенапряжения

Для полноты картины следует упомянуть и о долгосрочном повышении и понижении напряжения. Причиной первого является авария на линии, в результате которой происходит обрыв нулевого провода, что вызывает повышение до 380 вольт. Нормализовать ситуации никакими приборами не получится, потребуется ждать устранения аварии.

Длительное снижение напряжения можно часто наблюдать в сельской местности или дачных поселках. Это связано с недостаточной мощностью трансформатора на подстанции.

В чем заключается опасность перепадов?

В соответствии с допустимыми нормами, допускается отклонение от номинала в диапазоне от -10% до +10%. При скачках напряжение может существенно выйти за установленные границы. В результате блоки питания бытовой техники подвергаются перегрузке и могут выйти из строя или существенно сократить свой ресурс. При высоких или длительных перепадах велика вероятность возгорания проводки, и, как следствие, пожара.

Пониженное напряжение также грозит неприятностями, особенно к этому критичны компрессоры холодильных установок, а также многие импульсные блоки питания.

Защитные устройства

Существует несколько видов защитных устройств различающихся как по функциональности, так и по стоимости, одни из них обеспечивают защиту только одному бытовому прибору, другие – всем имеющимся в доме. Перечислим хорошо зарекомендовавшие себя и наиболее распространенные защитные устройства.

Сетевой фильтр

Наиболее простой и доступный по деньгам вариант защиты маломощного бытового оборудования. Отлично зарекомендовал себя при бросках до 400-450 вольт. На более высокие импульсы устройство не рассчитано (в лучшем случае оно примет удар на себя, спасая дорогостоящую аппаратуру).

Фильтр удлинитель Swen Fort Pro

Основной элемент защиты у такого устройства – варистор (полупроводниковый элемент изменяющий сопротивление в зависимости от приложенного напряжения). Именно он выходит из строя при импульсе более 450 В. Вторая важная функция фильтра – защита от высокочастотных помех (возникают при работе электродвигателя, сварки и т.д.) отрицательно влияющих на электронику. Третьим элементом защиты является плавкий предохранитель, срабатывающий при КЗ.

Не следует путать фильтры с обычными удлинителями, которые не обладают защитными функциями, но похожи по внешнему виду. Чтобы различить их достаточно посмотреть паспорт изделия, где приведены полные характеристики. Отсутствие такового должно само по себе вызывать подозрение.

Стабилизатор

В отличие от предыдущего типа приборы этого класса позволяют нормализовать напряжение в соответствии с номинальным. Например, установив границу в пределах 110-250 В, на выходе устройства будет стабильные 220 В. Если напряжение выйдет за пределы допустимого, прибор отключит питание и возобновит его подачу после нормализации работы электросети.

Стабилизатор EDR-1000 от производителя Luxeon

В некоторых случаях (например, в сельской местности) установка стабилизатора является единственным способом повысить напряжение до необходимой нормы. Бытовые стабилизаторы выпускают двух модификаций:

  • Линейные. Они предназначены для подключения одного или нескольких бытовых приборов.
  • Магистральные, устанавливаются на входе электросети здания или квартиры.

И первые, и вторые следует подбирать исходя из мощности нагрузки.

Источники бесперебойного питания

Основное отличие от предыдущего типа является возможность продолжения подачи питания подключенного устройства после срабатывания защиты или полного отключения электричества. Время работы в таком режиме напрямую зависит от емкости аккумуляторной батареи и мощности нагрузки.

Бесперебойный блок питания APC, модель SC-420

В быту эти устройства в основном используются для подключения стационарных компьютеров, чтобы при проблемах с электросетью не потерять данные. При срабатывании защиты ИБП будет продолжать подачу питания в течение определенного времени, как правило, не более получаса (зависит характеристик устройства). Этого времени вполне достаточно, чтобы сохранить необходимые данные и корректно отключить компьютер.

Современные модели ИБП могут самостоятельно управлять работой компьютера через USB интерфейс, например, закрыть текстовый редактор (предварительно сохранив открытые документы), после чего произвести отключение. Это довольно полезная функция, если пользователь при срабатывании защиты не находился рядом.

Устройства защиты от импульсных перенапряжений

Все перечисленные выше приборы обладают общим недостатком, у них не реализована действенная защита от импульса высокого напряжения. Если таковой произойдет, он, практически гарантированно выведет такие устройства из строя. Следовательно, защита должна быть организована таким образом, чтобы после срабатывания можно было оперативно привести ее в рабочее состояние. Этому требованию, как нельзя лучше отвечают УЗИП. На их основе организуется многоуровневая система защиты внутренних линий частного дома.

Одна из принятых классификаций таких устройств показана в таблице.

Таблица 1. Классификация УЗИП

Источники:

http://businessman.ru/zaschita-ot-perenapryajeniya-v-seti.html
http://yaelectrik.ru/jelektroshhitok/zashhita-ot-perenapryazheniya
http://odinelectric.ru/equipment/zashita-ot-skachkov-napryazheniya
http://amperof.ru/bezopasnost/zashhita-perenapryazheniya-chastnom-dome.html
http://www.asutpp.ru/zashhita-ot-perenapryazheniya.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector