8 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Оборудование для производства микросхем

Оборудование для производства микросхем. Технология их создания

Без чего сложно представить существование современного человека? Конечно, без современной техники. Некоторые вещи так вошли в нашу жизнь, так приелись. Интернет, телевизор, микроволновки, холодильники, стиральные машины – без этого сложно представить современный мир и, конечно, себя в нем.

Что делает практически всю сегодняшнюю технику по-настоящему полезной и нужной?

Какое изобретение предоставило прогрессу широчайшие возможности?

Одно из самых незаменимых открытий человека — технология производства микросхем.

Благодаря ей современная техника имеет такие небольшие размеры. Она компактна и удобна.

Все мы знаем, что в доме может уместиться огромное количество вещей, состоящих из микросхем. Многие из них помещаются в кармане брюк и имеют незначительный вес.

Тернистый путь

Чтобы добиться результата и получить микросхему, ученые трудились долгие годы. Начальные схемы имели огромнейшие по нынешним меркам размеры, они были больше и тяжелее холодильника, при ом что современный холодильник не состоит сплошь из сложных и запутанных схем. Ничего подобного! В нем есть одна маленькая, но превосходящая по своей полезности старые и громоздкие. Открытие произвело фурор, дав толчок дальнейшему развитию науки и техники, прорыв был сделан. Оборудование для производства микросхем выпущено.

Оборудование

Производство микросхем является непростой задачей, но благо у человека имеются те технологии, которые максимально упрощают задачу производства. Несмотря на сложность, ежедневно выпускается огромное количество микросхем по всему миру. Они постоянно совершенствуются, приобретают новые особенности и повышенные характеристики. Как же появляются эти маленькие, но умные системы? В этом помогает оборудование для производства микросхем, о котором, собственно, говорится далее.

При создании микросхем используются системы электрохимического осаждения, камеры отмывки, лабораторные окислительные камеры, системы электроосаждения меди, фотолитографическое и другое технологическое оборудование.

Фотолитографическое оборудование является самым дорогим и точным в машиностроении. Оно отвечает за создание изображений на кремниевой подложке для выработки намеченной топологии микросхемы. На тонкий слой материала наносится фоторезист, впоследствии подвергающийся облучению фотошаблоном и оптической системой. В процессе работы оборудования идет уменьшение размеров элементов рисунка.

В системах позиционирования ведущую роль играет линейный электродвигатель и лазерный интерферометр, имеющие часто обратную связь. Но, например, в технологии, разработанной московской лабораторией «Амфора», такая связь отсутствует. Это отечественное оборудование имеет более точное перемещение и плавное повторение с обеих сторон, что исключает возможность люфта.

Специальные фильтры защищают маску от нагревания, исходящего от области глубокого ультрафиолета, перенося температуру за 1000 градусов на протяжении долгих месяцев работы.

Низкоэнергетичные ионы осваивают в нанесении на многослойные покрытия. Ранее эта работа выполнялась исключительно методом магнетронного распыления.

Технология производства микросхем

Начинается весь процесс создания с подбора полупроводниковых кристаллов. Самым актуальным является кремний. Тонкую полупроводниковую пластину начищают до возникновения зеркального отображения в ней. В дальнейшем обязательным этапом создания будет фотолитография с применением ультрафиолета при нанесении рисунка. В этом помогает станок для производства микросхем.

Что такое микросхема? Это такой многослойный пирожок из тонких кремниевых пластин. На каждую из них нанесен определенный рисунок. Этот самый рисунок и создается на этапе фотолитографии. Пластины осторожно помещают в специальное оборудование с температурой свыше 700 градусов. После обжига их промывают водой.

Процесс создания многослойной пластины занимает до двух недель. Фотолитографию проводят многочисленное количество раз вплоть до достижения необходимого результата.

Создание микросхем в России

Отечественные ученые в этой отрасли также имеют собственные технологии производства цифровых микросхем. По всей стране функционируют заводы соответствующего профиля. На выходе технические характеристики мало чем уступают конкурентам из других стран. Отдают предпочтение российским микросхемам в нескольких государствах. Все благодаря зафиксированной цене, которая меньше, чем у западных производителей.

Необходимые составляющие выпуска качественных микросхем

Микросхемы создаются в помещениях, оборудованных системами, контролирующими чистоту воздуха. На всем этапе создания специальные фильтры собирают информацию и обрабатывают воздух, тем самым делая его чище, чем в операционных. Работники на производстве носят специальные защитные комбинезоны, которые часто оборудованы системой внутренней подачи кислорода.

Производство микросхем является прибыльным бизнесом. Хорошие специалисты в этой области всегда востребованы. Практически вся электроника функционирует за счет микросхем. Ими оснащаются современные автомобили. Космические аппараты не смогли бы функционировать без наличия в них микросхем. Процесс получения регулярно совершенствуется, качество улучшается, возможности расширяются, срок пригодности растет. Микросхемы будут актуальны на протяжении долгих десятков, а то и сотен лет. Главная их задача — приносить пользу на Земле и вне ее.

Российское оборудование для производства печатных плат

Компания «ДИАЛ Электролюкс» является современным, высокотехнологичным, непрерывно развивающимся предприятием. Продукция, изготавливаемая на нашем брянском заводе при помощи современного оборудования с использованием высококачественных электронных компонентов зарубежного производства, отличается высокой степенью надежности и достаточно низкой ценой. Современное техническое оснащение собственной производственной базы позволяет нам изготавливать широкий спектр технологического оборудования для поверхностного монтажа. Современные технологии и высокий уровень инженерной подготовки технических служб позволяют предприятию «ДИАЛ Электролюкс» работать стабильно и постоянно развиваться. Конструкторские и технологические системы проектирования обеспечивают высокие темпы разработок и выпуска новой продукции.

Автоматический принтер трафаретной печати »BURAN B100»

Автоматический принтер трафаретной печати «BURAN B100» разработан в соответствии с требованиями современной электронной индустрии и предназначен для использования как в составе производственных линий в режиме «inline», так и на небольших производствах в качестве автономного устройства в режиме «offline». Все системы принтера отличаются высокой надежностью, гибкостью, простотой эксплуатации и обслуживания.
Основные технические характеристики «BURAN B100»:
— несущая рама принтера изготовлена из высококачественной стали и благодаря продуманной конструкции обеспечивает стабильное функционирование всех движущихся блоков, что в свою очередь гарантирует высокую точность и повторяемость печати
— печатающая головка принтера предназначена для установки на ней двух ракелей, имеет электрическое и пневматическое управление, перемещается со скоростью 5мм/с-200 мм/с и обеспечивает стабильное давление печати (30-240Н) в областях от 75х75мм до 508х508мм. Опционально головка принтера может оборудоваться приводом для поворота ракелей на требуемый угол (максимально 90°). Размер рамки для трафарета может варьироваться в диапазоне от 540х540мм (с адаптером) до 740х740мм. Программное обеспечение позволяет выбирать оператору режим работы печатающей головки наиболее подходящий для нанесения материала на конкретное изделие, а также сохранять данный режим в памяти компьютера
— программное обеспечение позволяет оператору и техническому персоналу производить все необходимые операции по управлению и обслуживанию систем принтера нажатием нескольких клавиш или несколькими щелчками «мыши». Интерфейс пользователя, управляющего компьютером, информативен и удобен в использовании. Все параметры печати и функции принтера отображены в главном окне и доступны после загрузки компьютера
— конвейерная система принтера оборудована специальным устройством обеспечивающим надежную и точную фиксацию печатной платы перед началом процесса печати. Конвейер оборудован световыми барьерами контролирующими перемещение печатных плат. Опционально принтер может быть оборудован механическим стопором для остановки печатных плат. Под конвейерной системой находится поднимающийся стол, на который устанавливаются магнитные подставки для поддержания печатной платы или вакуумная система поддержки (опция), используемая при работе с хрупкими или тонкими платами
— точное совмещение печатной платы и трафарета достигается благодаря использованию видеосистемы, перемещающейся посредством портала по осям X и Y в пространстве между конвейером и трафаретом. Видеосистема состоит из двух CCD-камер одна из которых направлена вверх для поиска точек совмещения находящихся на трафарете, вторая камера направлена вниз для распознавания реперных знаков на печатной плате. После установки рамки с трафаретом в позицию печати (опционально возможна установка на принтер системы автоматической загрузки трафарета) и подачи печатной платы на конвейер происходит фиксация печатной платы и распознавание реперных знаков на плате и трафарете. Далее производится коррекция отклонений посредством установки конвейерной системы в точную позицию, совмещение печатной платы с трафаретом и нанесение материала через трафарет посредством печатающей головки. Точность печати принтера BURAN составляет 15мкм при 6 Сигма
— автоматическая система чистки трафарета (опция) состоит из привода перемещающего систему по оси Y и привода вращения рулона чистящей ткани. Кроме того система чистки оборудована диспенсером чистящей жидкости и вакуумной планкой с соплами. Оператор может выбирать необходимый режим чистки и задавать периодичность чистки трафарета посредством программного обеспечения. Возможен выбор отдельного режима чистки: сухая, влажная или вакуумная, а также любая комбинация вышеперечисленных способов чистки, например, влажная с вакуумом
— контроль над качеством нанесения материала на печатную плату, а также контроль над чистотой апертур трафарета осуществляется посредством видеосистемы при помощи опции «2D инспекция». Программным обеспечением предусмотрена возможность создания максимально 1024 окон для проведения контроля интересующих оператора участков печатной платы. Поле обзора видеокамеры 20х16мм, 1280х1024 пикселей, размер пикселя — 15мкм. Инспекция проводится с большой скоростью — 1 окно/1секунда

Полуавтоматический принтер трафаретной печати В70

Данный полуавтоматический принтер предназначен для нанесения паяльных паст на печатные платы. Печатная плата вручную устанавливается на стол и фиксируется пневматическими зажимами. После нажатия оператором педали стол перемещается в зону печати при помощи серводвигателя. Нанесение паяльной пасты на плату и возврат стола в исходную позицию осуществляются автоматически. Загрузка программ печати и изменение параметров печати проводятся оператором посредством управляющего компьютера.
Краткие технические характеристики
Макс.формат печати 460х460мм
Точность печати +/-10мкм
Скорость печати 10-200мм/сек
Давление печати 10-250Н
Габариты принтера (дхшхв) 1620х1350х1380мм
Вес

Ручной принтер трафаретной печати В10

Компактный настольный принтер, предназначенный для печати через трафарет и оптимально подходящий для опытного или мелкосерийного производства. Принтер используется для нанесения паяльных паст на печатные платы. В10 оборудован ракельной головкой (2 ракеля) с пневмоуправлением. Фиксация платы на столе печати также осуществляется пневматически. Позиции стола печати по осям Х/Y, углу и высоте выставляются оператором вручную. Также вручную осуществляется перемещение ракельной головки.
Краткие технические характеристики
Мин.формат печати 50х50мм
Макс.формат печати 350х450мм
Точность печати +/-10мкм
Габариты принтера (дхшхв) 800х800х350мм
Вес

Печь конвекционного оплавления REHM VXs air 2100 (тип 421)

Финальную стадию процесса сборки печатной платы обеспечивает специальное оборудование – печь оплавления. Печатные платы с нанесенным слоем паяльной пасты и установленными компонентами помещают на конвейер печи. Далее печатные платы, перемещаясь по конвейеру, проходят через зоны предварительного нагрева, пиковые зоны и зоны охлаждения. Паяльная паста оплавляется и затем фиксирует электронные SMD компоненты на поверхности платы.
Печь VXs 2100 предназначена для мелко- и среднесерийного производства и может интегрироваться в технологическую линию поверхностного монтажа или работать как автономное устройство. Функциональность, технологичность, высокое качество сборки и применяемых материалов, оптимальные температурные характеристики, приспособленность к бессвинцовой технологии и невысокая стоимость — все это достоинства печи Rehm VXs 2100.
Печь VXs 2100 предназначена для пайки в воздушной среде. Процесс-камера печи состоит из 8 зон:
— 4 зоны предварительного нагрева
— 2 зоны пикового нагрева
— 2 зоны охлаждения

Читать еще:  Виды и формы эмиссионных ценных бумаг

Общая длина зон нагрева 2100мм. Длина каждого нагревательного модуля и модуля охлаждения — 350мм.
Максимальная температура в зонах предварительного нагрева — 300оС, в зоне пикового нагрева — 350оС. Длина зоны охлаждения — 700мм.
Контроль над внутренней температурой осуществляется при помощи термодатчиков, расположенных внутри каждой рабочей зоны. Благодаря близкому расположению датчиков к уровню конвейера, возможно получение реальных значений температуры в каждой зоне процесс-камеры.
Производительность системы: 75 печатных плат в час (при условии, что длина печатной платы 300мм и расстояние между платами 100мм).
Печатные платы перемещаются в процесс-камере печи по игольчатому конвейеру. Ширина конвейера с цепью центральной поддержки настраивается в пределах от 65 до 400мм. Длина игл конвейера 3мм, опционально возможна установка цепи с иглами длиной 5мм.

Скорость конвейера устанавливается в зависимости от требований технологического процесса в пределах от 180 до 1800мм/мин.
Для предотвращения коробления печатных плат во время пайки, в конструкции печи используется система центральной поддержки платы, конструктивно выполненная в виде цепи, состоящей из плоских звеньев.
Смазка цепей конвейера производится автоматически, при помощи специальной смазочной системы. Использование этой системы позволяет экономить средства на смазочных материалах за счет оптимального распределения смазки на цепи конвейера.
Энергопотребление: 380В, 50/60Гц, 40/7.5кВт.
Габаритные размеры:
— 3590х1480х1738мм (ДхШхВ), высота с открытыми кожухами 2300мм.
— занимаемая площадь 5.31м2.
Масса печи: 1800 кг.

Конвейерная система B1a

Описание системы
Транспортная система с длиной сегмента 530мм.
Конвейер используется как промежуточная система между двумя устройствами в технологической линии SMT монтажа.
Особенности системы:
•Регулируемая скорость конвейера
•Функция контроля печатной платы
•Интерфейс SMEMA
•Ширина конвейера от 60мм до 460мм
•Электропитание: 230 В / 115 В, 50 / 60 Гц, ± 10%
•Потребляемая мощность — 0,2 кВт
•Высота конвейера 950 мм ± 50 мм.

Конвейерная система B1b

Описание системы
Транспортная система с длиной сегмента 600мм.
Конвейер используется как промежуточная система между двумя устройствами в технологической линии поверхностнго монтажа. Установка ширины конвейера производится вручную. Фиксация ширины производится при помощи специальных зажимов.
Особенности системы:
* Антистатические ремни конвейера
* Интерфейс SMEMA
* Кнопка управления Start / Stoр
* Ширина конвейера: 60-460 мм.
* Потребляемая мощность — 0.2 кВт.
Опции:
* Функция контроля печатной платы
* Регулировка скорости конвейера

Конвейерная система B2b

Описание системы:
Транспортная система c двумя сегментами. Длина каждого сегмента 600мм. Конвейер используется как промежуточная система между двумя устройствами в технологической линии. Установка ширины конвейера производится вручную. Фиксация ширины производится при помощи специальных зажимов.
Особенности системы:
* Антистатические ремни конвейера
* Интерфейс SMEMA
* Кнопка управления Start / Stoр
* Ширина конвейера: 60-460 мм.
* Потребляемая мощность — 0.2 кВт.
Опции:
* Функция контроля печатной платы
* Регулировка скорости конвейера

Конвейерная ремонтная станция B1R

Данный конвейер главным образом предназначен для выполнения операций по контролю поверхностного монтажа SMD компонентов, установленных на печатную плату и исправлению дефектов монтажа, обнаруженных в результате оптического (рентгеновского) контроля. Система оборудована удобной передней панелью, рассчитанной на два рабочих места для операторов. Каждое рабочее место оборудовано кнопками «Старт» и «Стоп» для пуска/остановки сегмента конвейера. Каждый из сегментов имеет независимое управление.
Технические данные:
• высота — регулируемая
• ширина — 910мм
• длина — 1500мм
• 2 рабочих места
• освещение рабочего места
• регулируемая полка
• 2 независимо работающих сегмента
• 4 розетки для подключения инструмента

Рабочая конвейерная станция B3R

Описание системы:
Данный конвейер главным образом предназначен для выполнения операций по контролю монтажа компонентов установленных на печатную плату и исправлению дефектов монтажа, обнаруженных в результате контроля. Система оборудована удобной передней панелью, системой освещения и электророзетками для подключения внешнего оборудования
Особенности системы:
— 3 рабочих сегмента общей длиной 1800мм
— регулируемая полка для инструментов и материалов
— лампа освещения рабочего места
— интерфейс SMEMA

Мобильный стол Т01 для сращивания лент с компонентами

Стол Т01 предназначен для использования на производстве, оснащенном автоматическими установщиками SMD-компонентов. Мобильность и оснастка стола позволяют производить сращивание лент с компонентами за короткий период времени, что естественным образом значительно снижает потери производственного времени, требуемого на пополнение компонентов в питателях.

Описание:
* Инструмент Splice Tool крепления для катушек с лентами и инструмента для сращивания;
* Хорошая маневренность;
* Вместительная корзина для катушек;
* Ячейки для инструментов и расходных материалов;
* Запатентованный инструмент компании Siemens для скрепления лент с компонентами.

Вот такой вот интересный набор) Есть и другие производители. К сожалению SMT установщиков отечественного производства пока найти не удалось. Может кто-нибудь знает?

Как делают микропроцессоры

Часть 1 (О полупроводниках вообще и о диодах)

Часть 3 (Как заставить машину считать при помощи транзистора)

. потому как на бумаге всё просто, но блин, как они это всё запихнули в чип размером с ноготь?!

(один из комментариев к предыдущему посту)
Ну что же, вот об этом сейчас и пойдёт речь.

Увеличенное изображение неразрезанных кристаллов процессоров Intel Core I7.

Действительно, разбираясь в том, как работают транзисторы, нельзя обойти вниманием вопрос миниатюризации. На современных чипах размером с тетрадную клетку располагаются несколько миллиардов транзисторов, размер каждого из которых колеблется в пределах нескольких нанометров (одна миллиардная часть метра). Создание подобных монстров — задача, с которой в наше время люди справляются только при помощи средств компьютерного проектирования.

Чтобы дать представление о том, насколько сложна структура современного микропроцессора, предлагаю взглянуть на самую простую схему самого простого, самого первого коммерческого микропроцессора фирмы Intel 4004.

Кристалл этого 4-битного микропроцессора имел площадь 12 мм², размер каждого из 2300 транзисторов был «огромным» по современным меркам (10 мкм), транзисторы на современных кристаллах имеют размер примерно в тысячу раз меньше!

А вот, что представлял собой кристалл этого процессора:

Создание микропроцессора начинается с процесса его проектирования. Задача конструкторов создать и предварительно протестировать схему микропроцессора. Выпуск новой схемы занимает труд десятков, если не сотен инженеров, и занимает месяцы подготовки. Когда процесс проектирования будет закончен, необходимо изготовить фотошаблон для нового чипа. Для того чтобы оценить важность данного процесса и цену ошибки, достаточно сказать, что нажатие кнопки PRINT в данном случае «стоит» от 600 тыс. до 1 млн. долларов США, а для набора шаблонов стоимость может исчисляться уже десятками миллионов долларов.

Создание фотошаблона (для современных многослойных схем микропроцессоров речь идёт уже о наборах фотошаблонов) – наверное, наиболее важный (после проектирования) процесс в технологии изготовления микропроцессоров.
Фотошаблон обычно представляет собой кусок стекла, с напылением из хрома, на который нанесено «негативное» изображение интегральной схемы. Оно обычно в несколько раз больше тех размеров, которые впоследствии примет изготовленный микрочип, но исключительная сложность современных процессоров и огромное количество транзисторов всё равно позволяют разглядеть отдельные детали только при помощи довольно мощного микроскопа.

Готовый фотошаблон очень тщательно (буквально каждую дорожку) проверяют на предмет дефектов. Для этих целей служат как специальные машины, но используется и труд людей, проверяющих шаблон при помощи микроскопов. Работа с шаблонами производится в т. н. «чистой комнате», где содержание пыли и посторонних примесей сведено до минимума – люди ходят в специальных костюмах – любая пылинка на шаблоне произведёт эффект деревянного бревна, упавшего на карточный домик.

Когда фотошаблон изготовлен, приходит время его «печати» на том, что впоследствии станет микропроцессором. Процесс (вернее, целое семейство технологических процессов) называется фотолитография и по своим базовым принципам очень похож на процесс печати фотографий с негатива).

Начинается всё с обычного кварцевого песка.

Песок проходит целую серию процессов по очистке и химических реакций, целью которых является получение чистейшего кремния. Для экономии места позвольте мне опустить технические детали процесса очистки.

Только после этого бывший песок разогревается до 1420 градусов Цельсия, что всего на 6 градусов выше его точки плавления. Для этого используется графитовый нагреватель. Выбор материала, как и в случае с кварцем тигля, обусловлен тем, что графит не реагирует с кремнием и, следовательно, не может загрязнить материал будущего процессора.

В нагретый тигель опускается тонкий затравочный кристалл кремния, размером и формой напоминающий карандаш. Он должен запустить процесс кристаллизации. Дальнейшее можно воспроизвести в домашних условиях с раствором соли, сахара, лимонной кислоты или, например, медного купороса. Остывающий раствор начинает кристаллизироваться вокруг затравочной точки, образуя идеальную молекулярную решётку. Так выращивают кристаллы соли, так растёт и кристалл кремния.

Затравочный кристалл кремния постепенно поднимают из тигля, со скоростью примерно полтора миллиметра в минуту, и с ним из раствора поднимается растущий монокристалл. Рост кристалла происходит медленно и на один тигель уходит в среднем 26 часов, так что производство работает круглосуточно.

За это время образуется цельный цилиндрический кристалл диаметром 300 миллиметров, длиной до 1-2 метров и весом около 100 килограммов. Если взглянуть на него под сильным увеличением, взгляду откроется строгая структура — идеальная кристаллическая решётка из атомов кремния, совершенно однородная по всему объёму.

Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра. Так что, готовую заготовку для процессоров вытягивают из тигля за тот самый затравочный кристалл.

После химического и рентгеноскопического исследования для проверки чистоты кристалла и правильности молекулярной решётки, заготовку помещают в установку для резки. Проволочная пила с алмазным напылением нарезает кристалл на блины (или вафли от англ. wafer) толщиной примерно в 1 мм.

Когда такой гигант процессоростроения, как Intel только начинал производить чипы, он использовал «вафли» диаметром всего 2 дюйма. Теперь, для удешевления процесса, используются «вафли» диаметром 12 дюймов (

Какой бы тонкой и гладкой ни была пила, всё равно заготовка будет иметь сколы, микроповреждения и царапины, поэтому каждую пластину дополнительно полируют. Но и этого оказывается недостаточно, поэтому окончательная полировка производится уже химическими реагентами.

Читать еще:  Возмездное отчуждение недвижимого имущества что это

Следующим этапом является нанесение на вафли фоторезиста – полимерного светочувствительного материала. По своим химическим свойствам фоторезист очень похож на материал, который наносился на фото- и киноплёнки в ещё сравнительно недалёком прошлом. Разница в том, что на старых плёнках фоторезист изменял свои химические свойства под действием видимого света, сейчас же используется ультрафиолетовое излучение.Наиболее широко распространённый метод нанесения фоторезистов на поверхность — это центрифугирование. Этот метод позволяет создавать однородную плёнку фоторезиста и контролировать её толщину скоростью вращения пластины (порядка нескольких тысяч оборотов в минуту).

Теперь приходит время для непосредственного экспонирования – подготовленный фотошаблон помещается под ультрафиолетовый лазер, и, сильно уменьшенное изображение с фотошаблона проецируется на слой фоторезиста, на машине под названием «степпер» (от англ. step – шаг) – на одну «вафлю» проецируется множество копий одной и той же маски:

Почему ультрафиолет? Всё дело в длине волны. Получение чёткой проекции микроскопического объекта зависит от длины волны излучения и разрешающей силы оптической системы. В современной промышленности используют глубокий ультрафиолет эксимерного лазера с длиной волны 193 нм. Но и этого оказывается недостаточным для изготовления транзисторов по тех. процессу ниже 50 нм (когда говорят о техпроцессе, имеют в виду линейные размеры одного транзистора). Фотолитография на глубоком ультрафиолете использует уже не линзы, а многослойные зеркала, где каждый слой даёт слегка отличающуюся от предыдущей интерференционную картину, а комбинированное отражение всех слоёв позволяет получить изображение меньшее, чем длина волны используемого излучения. Тем, кто интересуется темой более подробно, в англоязычной версии Википедии есть великолепная статья на эту тему.

Но двинемся дальше. Те области на вафле, покрытой фоторезистом, куда попал ультрафиолет, могут быть смыты специальным химическим составом (например Гидроксидом тетраметиламмония), таким образом на нашей заготовке проявится «отпечаток» будущего микропроцессора. Но работа на этом только начинается.
После травления, на кремниевой подложке образуются бороздки, повторяющие рисунок первого слоя микропроцессора:

На следующем этапе происходит легирование основы. О том, зачем нужно легирование, можно ознакомиться в первой части данной серии. На данном шаге участки подложки обогащаются ионами, в результате чего кремний меняет свои физические свойства, позволяя процессору управлять потоками электрического тока. Ионизированные ядра атомов легирующего вещества разгоняются в электрическом поле до огромных скоростей и внедряются в незащищённые слоем фоторезиста области подложки.

После легирования заготовка покрывается оксидной плёнкой (в данном технологическом процессе используется термин High-K, характеризующий материал с диэлектрической проницаемостью большей, чем у диоксида кремния). Название происходит от диэлектрической константы материала, обозначаемой греческой буквой κ – каппа. В более старых технологических процессах использовался, собственно сам диоксид кремния. Он был хорош до поры, его слой можно было выращивать путём высокотемпературного окисления на самом кремниевом слое, однако, с уменьшением площади транзистора, уменьшалась и площадь затвора, а следственно – его ёмкость. Чтобы увеличить ёмкость можно уменьшать слой диэлектрика под затвором, но если его толщина уменьшается менее 3 нм, начинают проявляться квантовомеханические свойства электронов, которые попросту туннелируют через этот смехотворный барьер, создавая ток утечки, и, чем тоньше слой, тем сильнее проявляется этот эффект. Изготовление подзатворного диэлектрика из материала с высокой диэлектрической проницаемостью позволяет увеличить его толщину, одновременно увеличивая ёмкость затвора, обеспечивая снижение тока утечки на несколько порядков по сравнению с более тонким диэлектриком из диоксида кремния. При производстве современных чипов используются силикат или оксид гафния. На картинке слева – транзистор, обработанный слоем фоторезиста, справа – состояние после смывки облучённого фоторезиста.

Ненужный нам теперь слой диэлектрика так же смывается химическим путём:

На данном этапе транзисторы на схеме уже готовы, но они не соединены друг с другом. Следующие два этапа – нанесение изолирующего слоя, где в местах, где расположены терминалы транзисторов уже знакомым нам образом вытравливаются отверстия. После этого, вафлю помещают в раствор сульфата меди и гальванизируют. В ходе этого процесса, медь покрывает всю поверхность заготовки:

Излишек меди убирается шлифовкой, после чего транзисторы соединяются между собой:

Порядок соединения зависит от архитектуры процессора и определяется на стадии проектирования. Хотя чип и может выглядеть «плоским», соединения могут достигать «этажности» до 30 слоёв.
На заключительной фазе, нашу «вафлю» нарезают, получая, тем самым, отдельные чипы, после чего останется только поместить их в защитный корпус:

Соединение миллиардов транзисторов невероятно сложная задача, от их качества зависит в конечном итоге производительность процессора, поэтому каждый чип проходит этап тестирования (причём, часть тестов проводится ещё до «нарезки») где определяются его выходные характеристики. Поскольку работа идёт с невероятным уровнем миниатюризации, ошибки и дефекты при изготовлении практически неизбежны.

Но наличие дефекта ещё не означает, что процессор не может работать. Коррекции ошибок уделяется особое внимание ещё на стадии проектирования, поэтому в схему нередко заложена некоторая избыточность. Часть бракованных чипов, например, может работать на более низких частотах, поэтому далеко не всегда два процессора, изготовленные на одной «вафле», будут иметь одинаковую маркировку.

Ещё в 1965 году, американский инженер, один из основателей компании Intel, Гордон Мур, в одной из своих работ сделал наблюдение, которое впоследствии назвали «Законом Мура». Он гласил, что количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца (причём, изначально речь шла о 12 месяцев).

И действительно, если проследить эволюцию микропроцессоров, данный закон более-менее соблюдался почти 40 лет, до начала 2010-х годов, пока инженеры не «упёрлись» в физические пределы, во-первых, разрешающей возможности оптики для процесса фотолитографии, во-вторых – в минимально-необходимое расстояние между двумя терминалами транзисторов, где туннельный эффект ещё можно игнорировать. Чтобы ощутить, насколько мал транзистор, изготовленный по тех. процессу 14 нм, достаточно узнать, что это всего лишь 70 атомов (диаметр ядра атома кремния около 0,2 нм).

Хотя, инженеры продолжают добиваться поразительных успехов в данной области, например, в 2012 году, исследовательская команда в университете Нового Южного Уэльса объявила о первом транзисторе, состоящем из единственного атома, несложно предположить, что конец закона Мура не за горами, и тех. процесс в 7 нм, возможно, будет последним в погоне за миниатюризацией.

Как делают микропроцессоры

Часть 1 (О полупроводниках вообще и о диодах)

Часть 3 (Как заставить машину считать при помощи транзистора)

. потому как на бумаге всё просто, но блин, как они это всё запихнули в чип размером с ноготь?!

(один из комментариев к предыдущему посту)
Ну что же, вот об этом сейчас и пойдёт речь.

Увеличенное изображение неразрезанных кристаллов процессоров Intel Core I7.

Действительно, разбираясь в том, как работают транзисторы, нельзя обойти вниманием вопрос миниатюризации. На современных чипах размером с тетрадную клетку располагаются несколько миллиардов транзисторов, размер каждого из которых колеблется в пределах нескольких нанометров (одна миллиардная часть метра). Создание подобных монстров — задача, с которой в наше время люди справляются только при помощи средств компьютерного проектирования.

Чтобы дать представление о том, насколько сложна структура современного микропроцессора, предлагаю взглянуть на самую простую схему самого простого, самого первого коммерческого микропроцессора фирмы Intel 4004.

Кристалл этого 4-битного микропроцессора имел площадь 12 мм², размер каждого из 2300 транзисторов был «огромным» по современным меркам (10 мкм), транзисторы на современных кристаллах имеют размер примерно в тысячу раз меньше!

А вот, что представлял собой кристалл этого процессора:

Создание микропроцессора начинается с процесса его проектирования. Задача конструкторов создать и предварительно протестировать схему микропроцессора. Выпуск новой схемы занимает труд десятков, если не сотен инженеров, и занимает месяцы подготовки. Когда процесс проектирования будет закончен, необходимо изготовить фотошаблон для нового чипа. Для того чтобы оценить важность данного процесса и цену ошибки, достаточно сказать, что нажатие кнопки PRINT в данном случае «стоит» от 600 тыс. до 1 млн. долларов США, а для набора шаблонов стоимость может исчисляться уже десятками миллионов долларов.

Создание фотошаблона (для современных многослойных схем микропроцессоров речь идёт уже о наборах фотошаблонов) – наверное, наиболее важный (после проектирования) процесс в технологии изготовления микропроцессоров.
Фотошаблон обычно представляет собой кусок стекла, с напылением из хрома, на который нанесено «негативное» изображение интегральной схемы. Оно обычно в несколько раз больше тех размеров, которые впоследствии примет изготовленный микрочип, но исключительная сложность современных процессоров и огромное количество транзисторов всё равно позволяют разглядеть отдельные детали только при помощи довольно мощного микроскопа.

Готовый фотошаблон очень тщательно (буквально каждую дорожку) проверяют на предмет дефектов. Для этих целей служат как специальные машины, но используется и труд людей, проверяющих шаблон при помощи микроскопов. Работа с шаблонами производится в т. н. «чистой комнате», где содержание пыли и посторонних примесей сведено до минимума – люди ходят в специальных костюмах – любая пылинка на шаблоне произведёт эффект деревянного бревна, упавшего на карточный домик.

Когда фотошаблон изготовлен, приходит время его «печати» на том, что впоследствии станет микропроцессором. Процесс (вернее, целое семейство технологических процессов) называется фотолитография и по своим базовым принципам очень похож на процесс печати фотографий с негатива).

Начинается всё с обычного кварцевого песка.

Песок проходит целую серию процессов по очистке и химических реакций, целью которых является получение чистейшего кремния. Для экономии места позвольте мне опустить технические детали процесса очистки.

Только после этого бывший песок разогревается до 1420 градусов Цельсия, что всего на 6 градусов выше его точки плавления. Для этого используется графитовый нагреватель. Выбор материала, как и в случае с кварцем тигля, обусловлен тем, что графит не реагирует с кремнием и, следовательно, не может загрязнить материал будущего процессора.

В нагретый тигель опускается тонкий затравочный кристалл кремния, размером и формой напоминающий карандаш. Он должен запустить процесс кристаллизации. Дальнейшее можно воспроизвести в домашних условиях с раствором соли, сахара, лимонной кислоты или, например, медного купороса. Остывающий раствор начинает кристаллизироваться вокруг затравочной точки, образуя идеальную молекулярную решётку. Так выращивают кристаллы соли, так растёт и кристалл кремния.

Затравочный кристалл кремния постепенно поднимают из тигля, со скоростью примерно полтора миллиметра в минуту, и с ним из раствора поднимается растущий монокристалл. Рост кристалла происходит медленно и на один тигель уходит в среднем 26 часов, так что производство работает круглосуточно.

За это время образуется цельный цилиндрический кристалл диаметром 300 миллиметров, длиной до 1-2 метров и весом около 100 килограммов. Если взглянуть на него под сильным увеличением, взгляду откроется строгая структура — идеальная кристаллическая решётка из атомов кремния, совершенно однородная по всему объёму.

Читать еще:  Как заработать домохозяйке

Кристалл настолько прочен, что его вес может выдержать нить диаметром всего 3 миллиметра. Так что, готовую заготовку для процессоров вытягивают из тигля за тот самый затравочный кристалл.

После химического и рентгеноскопического исследования для проверки чистоты кристалла и правильности молекулярной решётки, заготовку помещают в установку для резки. Проволочная пила с алмазным напылением нарезает кристалл на блины (или вафли от англ. wafer) толщиной примерно в 1 мм.

Когда такой гигант процессоростроения, как Intel только начинал производить чипы, он использовал «вафли» диаметром всего 2 дюйма. Теперь, для удешевления процесса, используются «вафли» диаметром 12 дюймов (

Какой бы тонкой и гладкой ни была пила, всё равно заготовка будет иметь сколы, микроповреждения и царапины, поэтому каждую пластину дополнительно полируют. Но и этого оказывается недостаточно, поэтому окончательная полировка производится уже химическими реагентами.

Следующим этапом является нанесение на вафли фоторезиста – полимерного светочувствительного материала. По своим химическим свойствам фоторезист очень похож на материал, который наносился на фото- и киноплёнки в ещё сравнительно недалёком прошлом. Разница в том, что на старых плёнках фоторезист изменял свои химические свойства под действием видимого света, сейчас же используется ультрафиолетовое излучение.Наиболее широко распространённый метод нанесения фоторезистов на поверхность — это центрифугирование. Этот метод позволяет создавать однородную плёнку фоторезиста и контролировать её толщину скоростью вращения пластины (порядка нескольких тысяч оборотов в минуту).

Теперь приходит время для непосредственного экспонирования – подготовленный фотошаблон помещается под ультрафиолетовый лазер, и, сильно уменьшенное изображение с фотошаблона проецируется на слой фоторезиста, на машине под названием «степпер» (от англ. step – шаг) – на одну «вафлю» проецируется множество копий одной и той же маски:

Почему ультрафиолет? Всё дело в длине волны. Получение чёткой проекции микроскопического объекта зависит от длины волны излучения и разрешающей силы оптической системы. В современной промышленности используют глубокий ультрафиолет эксимерного лазера с длиной волны 193 нм. Но и этого оказывается недостаточным для изготовления транзисторов по тех. процессу ниже 50 нм (когда говорят о техпроцессе, имеют в виду линейные размеры одного транзистора). Фотолитография на глубоком ультрафиолете использует уже не линзы, а многослойные зеркала, где каждый слой даёт слегка отличающуюся от предыдущей интерференционную картину, а комбинированное отражение всех слоёв позволяет получить изображение меньшее, чем длина волны используемого излучения. Тем, кто интересуется темой более подробно, в англоязычной версии Википедии есть великолепная статья на эту тему.

Но двинемся дальше. Те области на вафле, покрытой фоторезистом, куда попал ультрафиолет, могут быть смыты специальным химическим составом (например Гидроксидом тетраметиламмония), таким образом на нашей заготовке проявится «отпечаток» будущего микропроцессора. Но работа на этом только начинается.
После травления, на кремниевой подложке образуются бороздки, повторяющие рисунок первого слоя микропроцессора:

На следующем этапе происходит легирование основы. О том, зачем нужно легирование, можно ознакомиться в первой части данной серии. На данном шаге участки подложки обогащаются ионами, в результате чего кремний меняет свои физические свойства, позволяя процессору управлять потоками электрического тока. Ионизированные ядра атомов легирующего вещества разгоняются в электрическом поле до огромных скоростей и внедряются в незащищённые слоем фоторезиста области подложки.

После легирования заготовка покрывается оксидной плёнкой (в данном технологическом процессе используется термин High-K, характеризующий материал с диэлектрической проницаемостью большей, чем у диоксида кремния). Название происходит от диэлектрической константы материала, обозначаемой греческой буквой κ – каппа. В более старых технологических процессах использовался, собственно сам диоксид кремния. Он был хорош до поры, его слой можно было выращивать путём высокотемпературного окисления на самом кремниевом слое, однако, с уменьшением площади транзистора, уменьшалась и площадь затвора, а следственно – его ёмкость. Чтобы увеличить ёмкость можно уменьшать слой диэлектрика под затвором, но если его толщина уменьшается менее 3 нм, начинают проявляться квантовомеханические свойства электронов, которые попросту туннелируют через этот смехотворный барьер, создавая ток утечки, и, чем тоньше слой, тем сильнее проявляется этот эффект. Изготовление подзатворного диэлектрика из материала с высокой диэлектрической проницаемостью позволяет увеличить его толщину, одновременно увеличивая ёмкость затвора, обеспечивая снижение тока утечки на несколько порядков по сравнению с более тонким диэлектриком из диоксида кремния. При производстве современных чипов используются силикат или оксид гафния. На картинке слева – транзистор, обработанный слоем фоторезиста, справа – состояние после смывки облучённого фоторезиста.

Ненужный нам теперь слой диэлектрика так же смывается химическим путём:

На данном этапе транзисторы на схеме уже готовы, но они не соединены друг с другом. Следующие два этапа – нанесение изолирующего слоя, где в местах, где расположены терминалы транзисторов уже знакомым нам образом вытравливаются отверстия. После этого, вафлю помещают в раствор сульфата меди и гальванизируют. В ходе этого процесса, медь покрывает всю поверхность заготовки:

Излишек меди убирается шлифовкой, после чего транзисторы соединяются между собой:

Порядок соединения зависит от архитектуры процессора и определяется на стадии проектирования. Хотя чип и может выглядеть «плоским», соединения могут достигать «этажности» до 30 слоёв.
На заключительной фазе, нашу «вафлю» нарезают, получая, тем самым, отдельные чипы, после чего останется только поместить их в защитный корпус:

Соединение миллиардов транзисторов невероятно сложная задача, от их качества зависит в конечном итоге производительность процессора, поэтому каждый чип проходит этап тестирования (причём, часть тестов проводится ещё до «нарезки») где определяются его выходные характеристики. Поскольку работа идёт с невероятным уровнем миниатюризации, ошибки и дефекты при изготовлении практически неизбежны.

Но наличие дефекта ещё не означает, что процессор не может работать. Коррекции ошибок уделяется особое внимание ещё на стадии проектирования, поэтому в схему нередко заложена некоторая избыточность. Часть бракованных чипов, например, может работать на более низких частотах, поэтому далеко не всегда два процессора, изготовленные на одной «вафле», будут иметь одинаковую маркировку.

Ещё в 1965 году, американский инженер, один из основателей компании Intel, Гордон Мур, в одной из своих работ сделал наблюдение, которое впоследствии назвали «Законом Мура». Он гласил, что количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые 24 месяца (причём, изначально речь шла о 12 месяцев).

И действительно, если проследить эволюцию микропроцессоров, данный закон более-менее соблюдался почти 40 лет, до начала 2010-х годов, пока инженеры не «упёрлись» в физические пределы, во-первых, разрешающей возможности оптики для процесса фотолитографии, во-вторых – в минимально-необходимое расстояние между двумя терминалами транзисторов, где туннельный эффект ещё можно игнорировать. Чтобы ощутить, насколько мал транзистор, изготовленный по тех. процессу 14 нм, достаточно узнать, что это всего лишь 70 атомов (диаметр ядра атома кремния около 0,2 нм).

Хотя, инженеры продолжают добиваться поразительных успехов в данной области, например, в 2012 году, исследовательская команда в университете Нового Южного Уэльса объявила о первом транзисторе, состоящем из единственного атома, несложно предположить, что конец закона Мура не за горами, и тех. процесс в 7 нм, возможно, будет последним в погоне за миниатюризацией.

Как делают интегральные микросхемы

Появление интегральных микросхем произвело настоящую технологическую революцию в электронике и IT-индустрии. Казалось бы, всего несколько десятилетий назад для простейших электронных вычислений применялись огромные ламповые компьютеры, занимавшие по несколько комнат и даже целые здания.

Эти компьютеры содержали в себе многие тысячи электронных ламп, которые требовали для своей работы колоссальных электрических мощностей и особых систем охлаждения. Сегодня им на смену пришли компьютеры на интегральных микросхемах.

По сути интегральная микросхема представляет собой сборку из многих полупроводниковых компонентов микроскопической величины, размещенных на подложке и упакованных в миниатюрный корпус.

Один современный чип размером с человеческий ноготь может содержать внутри несколько миллионов диодов, транзисторов, резисторов, соединительных проводников и других компонентов, которые в былые времена потребовали бы для своего размещения пространство довольно крупного ангара.

За примерами далеко ходить не нужно, процессор i7, например, содержит на площади менее 3 квадратных сантиметров более трех миллиардов транзисторов! И это не предел.

Далее теперь рассмотрим основу процесса создания микросхем. Микросхема формируется по планарной (поверхностной) технологии путем литографии. Это значит, что она как бы выращивается из полупроводника на кремниевой подложке.

Первым делом подготавливается тонкая кремниевая пластина, которую получают из монокристалла кремния путем отрезания от цилиндрической заготовки при помощи диска с алмазным напылением. Пластину полируют в особых условиях, чтобы избежать попадания на нее загрязнений и любой пыли.

После этого пластину оксидируют — воздействуют на нее кислородом при температуре порядка 1000°C с целью получить на ее поверхности слой прочной диэлектрической пленки диоксида кремния толщиной в необходимое количество микрон. Толщина получаемого таким образом слоя оксида зависит от времени воздействия кислородом, а также от температуры подложки во время оксидирования.

Далее на слой диоксида кремния наносят фоторезист — светочувствительной состав, который после облучения растворяется в определенном химическом веществе. На фоторезист кладут трафарет — фотошаблон с прозрачными и непрозрачными участками. Затем пластину с нанесенным на нее фоторезистом экспонируют — засвечивают источником ультрафиолетового излучения.

В результате экспонирования та часть фоторезиста, которая находилась под прозрачными участками фотошаблона, изменяет свои химические свойства, и теперь может быть легко удалена вместе с находящимся под ним диоксидом кремния специальными химикатами, при помощи плазмы или другим способом — это называется травлением. По окончании травления незащищенные фоторезистом (засвеченные) места пластины оказываются очищены от засвеченного фоторезиста и затем — от диоксида кремния.

После травления и очищения от незасвеченного фоторезиста тех мест подложки, на которых остался диоксид кремния, приступают к эпитаксии — наносят на кремниевую пластину слои нужного вещества толщиной в один атом. Таких слоев может быть нанесено столько, сколько необходимо. Далее пластину нагревают и осуществляют диффузию ионов определенных веществ, чтобы получить p и n-области. В качестве акцептора используют бор, а в качестве доноров — мышьяк и фосфор.

В завершении процесса производят металлизацию алюминием, никелем или золотом, чтобы получить тонкие проводящие пленки, которые будут выступать в роли соединительных проводников для выращенных на подложке на предыдущих этапах транзисторов, диодов, резисторов и т. д. Таким же образом выводят контактные площадки для монтажа микросхемы на печатную плату.

Источники:

http://businessman.ru/new-oborudovanie-dlya-proizvodstva-mikrosxem.html
http://sdelanounas.ru/blogs/4737/
http://pikabu.ru/story/kak_delayut_mikroprotsessoryi_6779185
http://pikabu.ru/story/kak_delayut_mikroprotsessoryi_6779185
http://electrik.info/device/1553-kak-delayut-integralnye-mikroshemy.html

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector