10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Для проверки нулевой гипотезы

Содержание

Нулевая гипотеза в статистике: пример. Проверка нулевой гипотезы

Статистика — сложная наука об измерении и анализе различных данных. Как и во многих других дисциплинах, в этой отрасли существует понятие гипотезы. Так, гипотеза в статистике — это какое-либо положение, которое нужно принять или отвергнуть. Причём в данной отрасли есть несколько видов таких допущений, схожих между собой по определению, но отличающихся на практике. Нулевая гипотеза — сегодняшний предмет изучения.

От общего к частному: гипотезы в статистике

От основного определения предположений отходит ещё одно, не менее важное, — статистическая гипотеза есть изучение генеральной совокупности важных для науки объектов, относительно коих учёными делаются выводы. Ее можно проверить с помощью выборки (части генеральной совокупности). Приведём несколько примеров статистических гипотез:

1. Успеваемость всего класса, возможно, зависит от уровня образования каждого учащегося.

2. Начальный курс математики в равной степени усваивается как детьми, пришедшими в школу в 6 лет, так и детьми, пришедшими в 7.

Простой гипотезой в статистике называют такое предположение, которое однозначно характеризует определённый параметр величины, взятой учёным.

Сложная состоит из нескольких или бесконечного множества простых. Указывается некоторая область или нет точного ответа.

Полезно понимать несколько определений гипотез в статистике, чтобы не путать их на практике.

Концепция нулевой гипотезы

Нулевая гипотеза — это теория о том, что есть некие две совокупности, которые не различаются между собой. Однако на научном уровне нет понятия «не различаются», но есть «их сходство равно нулю». От этого определения и было образовано понятие. В статистике нулевая гипотеза обозначается как Н0. Причём крайним значением невозможного (маловероятного) считается от 0.01 до 0.05 или менее.

Лучше разобрать, что такое нулевая гипотеза, пример из жизни поможет. Педагог в университете предположил, что различный уровень подготовки учащихся двух групп к зачётной работе вызван незначительными параметрами, случайными причинами, не влияющими на общий уровень образования (разница в подготовке двух групп студентов равна нулю).

Однако встречно стоит привести пример альтернативной гипотезы — допущения, опровергающего утверждение нулевой теории (Н1). Например: директор университета предположил, что различный уровень в подготовке к зачётной работе у учащихся двух групп вызван применением педагогами разных методик обучения (разница в подготовке двух групп существенна и на то есть объяснение).

Теперь сразу видна разница между понятиями «нулевая гипотеза» и «альтернативная гипотеза». Примеры иллюстрируют эти понятия.

Проверка нулевой гипотезы

Создать предположение — это ещё полбеды. Настоящей проблемой для новичков считается проверка нулевой гипотезы. Именно тут многих и ожидают трудности.

Используя метод альтернативной гипотезы, утверждающей нечто обратное нулевой теории, можно сравнить оба варианта и выбрать верный. Так действует статистика.

Пусть нулевая гипотеза Н0, а альтернативная Н1, тогда:

Н0: c = c0;
Н1: c ≠ c0.

Здесь c — это некое среднее значение генеральной совокупности, которое предстоит найти, а c0 — данное изначально значение, по отношению к которому проверяется гипотеза. Также есть некоторое число Х — среднее значение выборки, по которому определяется c0.

Итак, проверка заключается в сравнении Х и c0, если Х=c0 ,то принимается нулевая гипотеза. Если же Х≠c0, то по условию верной считается альтернативная.

«Доверительный» способ проверки

Существует наиболее действенный способ, с помощью которого нулевая статистическая гипотеза легко проверяется на практике. Он заключается в построении диапазона значений до 95% точности.

Для начала понадобится знать формулу расчёта доверительного интервала:
X — t*Sx ≤ c ≤ X + t*Sx,

где Х — данное изначально число на основе альтернативной гипотезы;
t — табличные величины (коэффициент Стьюдента);
Sx — стандартная средняя ошибка, которая рассчитывается как Sx = σ/√n, где в числителе стандартное отклонение, а в знаменателе — объём выборки.

Итак, предположим ситуацию. До ремонта конвейер в день выпускал 32.1 кг конечной продукции, а после ремонта, как утверждает предприниматель, коэффициент полезного действия вырос, и конвейер, по недельной проверке, начал выпускать 39.6 кг в среднем.

Нулевая гипотеза будет утверждать, что ремонт никак не повлиял на КПД конвейера. Альтернативная гипотеза скажет, что ремонт коренным образом изменил КПД конвейера, поэтому производительность его повысилась.

По таблице находим n=7, t = 2,447, откуда формула примет следующий вид:

39,6 – 2,447*4,2 ≤ с ≤ 39,6 + 2,447*4,2;

Получается, что значение 32.1 входит в диапазон, а следовательно, значение, предложенное альтернативой — 39.6 — не принимается автоматически. Помните, что сначала проверяется на правильность нулевая гипотеза, а потом — противоположная.

Разновидности отрицания

До этого рассматривался такой вариант построения гипотезы, где Н0 утверждает что-либо, а Н1 это опровергает. Откуда можно было составить подобную систему:

Н0: с = с0;
Н1: с ≠ с0.

Но существует ещё два родственных способа опровержения. К примеру, нулевая гипотеза утверждает, что средняя оценка успеваемости класса больше 4.54, а альтернативная тогда скажет, что средняя успеваемость того же класса менее 4.54. И выглядеть в виде системы это будет так:

Для проверки нулевой гипотезы

1. Понятие нулевой гипотезы.

2. Общие принципы проверки статистических гипотез.

3. Понятие гипотезы в педагогике.

4.1 Понятие нулевой и альтернативной гипотезы

Поскольку статистика как метод исследования имеет дело с данными, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.

Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным. Примеры статистических гипотез в педагогических исследованиях:

Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.

Гипотеза 2. Усвоение начального курса математики не имеет существенных различий у учащихся, начавших обучение с 6 или 7 лет.

Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.

Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п. Примером нулевой гипотезы в педагогике является утверждение о том, что различие в результатах выполнения двумя группами учащихся одной и той же контрольной работы вызвано лишь случайными причинами.

Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Так, для упомянутого выше примера гипотезы Н в педагогике одна из возможных альтернатив Н1 будет определена как: уровни выполнения работы в двух группах учащихся различны и это различие определяется влиянием неслучайных факторов, например, тех или других методов обучения.

Выдвинутая гипотеза может быть правильной или неправильной, поэ­тому возникает необходимость проверить ее. Так как проверку произво­дят статистическими методами, то данная проверка называется статистической.

При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:

— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);

можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).

Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Проиллюстрируем вышесказанное на следующем примере.

Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.

Читать еще:  Продолжительность ежедневного междусменного отдыха

Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).

Ошибки двух видов, связанные с действиями а1 и а2 совершенно различны, различна и важность избегания их. Сначала рассмотрим случай, когда применяется действие а1, в то время когда предпочтительнее а2. Лекарство опасно для пациента, в то время как оно признано безопасным. Ошибка этого вида может вызвать смерть пациентов, употребляющих этот препарат. Это ошибка первого рода, так как нам важнее ее избежать.

Рассмотрим случай когда предпринимается действие а2, в то время когда а1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.

Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого экспе­римента;

второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;

третий уровень — 0,1%, т. е. допускается риск ошибить­ся только в одном случае из тысячи.

Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов экспе­римента и потому редко используется. В педагогических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5% уровень значимости.

Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.

Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.

Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.

4.2 Общие принципы проверки статистических гипотез

Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:

1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)

2. выбирается статистика критерия (Т)

3. ищется область допустимых значений

4. по исходным данным вычисляется значение статистики Т

5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это о сновной принцип проверки всех статистических гипотез.

Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.

В современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные буквой P , могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7 0,23 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне 12 тысячных. Это достоверный результат.

При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.

Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.

Число степеней свободы у какого-либо параметра определяют как число опы­тов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.

Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.

4.3 Понятие гипотезы в педагогике

Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:

— соответствие фактам, на основе которых и для обоснования которых она создана

— приложимость к возможно более широкому кругу явлений

В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство.

Педагогическая гипотеза (научное предположение о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статисти­ческой науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.

Возможны два типа гипотез: первый тип — описа­тельные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные: в них дается объяснение возможным следствиям из опре­деленных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объяс­няется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объясни­тельные гипотезы выводят исследователей на предпо­ложения о существовании определенных закономерных связей между явлениями, факторами и условиями.

Гипотезы в педагогических иссле­дованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.

Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.

Проверка гипотез

Общий обзор

Часто делают выборку, чтобы определить аргумен­ты против гипотезы относительно популяции (генеральной совокупности). Этот процесс известен как проверка гипотез (проверка статистических гипотез или проверка значимости), он представляет количественную меру аргументов про­тив определенной гипотезы.

Установлено 5 стадий при проверке гипотез:

  1. Определение нулевой () и альтернативной гипотезы () при исследовании. Определение уровня значимости критерия.
  2. Отбор необходимых данных из выборки.
  3. Вычисление значения статистики критерия, отвечающей .
  4. Вычисление критической области, проверка статистики критерия на предмет попадания в критическую область.
  5. Интерпретация достигнутого уровня значимости р и результатов.

Определение нулевой и альтернативной гипотез, уровня статистической значимости

При проверке значимости гипотезу следует формулировать независимо от используемых при ее проверке данных (до проведения проверки). В таком случае можно получить действительно продуктивный результат.

Читать еще:  Жилищные споры и порядок их разрешения

Всегда проверяют нулевую гипотезу (), которая отвергает эффект (например, разница средних равняется нулю) в популяции.

Например, при сравнении показателей курения у мужчин и женщин в популяции нулевая гипотеза означала бы, что показатели курения одинаковые у женщин и мужчин в популяции.

Затем определяют альтернативную гипотезу (), которая принимается, если нулевая гипотеза неверна. Альтернативная гипотеза больше относится к той теории, которую собираются исследовать. Итак, на этом примере альтернативная гипотеза заключается в утверждении, что показатели курения различны у женщин и мужчин в популяции.

Разницу в показателях курения не уточнили, т.е. не установили, имеют ли в популяции мужчины более высокие или более низкие показатели, чем женщины. Такой подход известен как двусторонний критерий, потому что учитывают любую возможность, он рекомендуется постольку, поскольку редко есть уверенность заранее в направлении какого-либо различия, если таковое существует.

В некоторых случаях можно использовать односторонний критерий для гипотезы , в котором направление эффекта задано. Его можно применить, например, если рассматривать заболевание, от которого умерли все пациенты, не получившие лечения; новый препарат не мог бы ухудшить положение дел.

Уровень значимости. Важным этапом проверки статистических гипотез является определение уровня статистической значимости , т.е. максимально допускаемой исследователем вероятности ошибочного отклонения нулевой гипотезы.

Получение статистики критерия, определение критической области

После того как данные будут собраны, значения из выборки подставляют в формулу для вычисления статистики критерия (примеры различных статистик критериев см. ниже). Эта величина количественно отражает аргументы в наборе данных против нулевой гипотезы.

Критическая область. Для принятия решения об отклонении или не отклонении нулевой гипотезы необходимо также определить критическую область проверки гипотезы.

Выделяют 3 вида критических областей:

  • двусторонняя:

Рис. 1 Двусторонняя критическая область

  • левосторонняя:

Рис. 2 Левосторонняя критическая область

  • правосторонняя:

Рис. 3 Правосторонняя критическая область

— заданный исследователем уровень значимости.

Если наблюдаемое значение критерия (K) принадлежит критической области (Kкр, заштрихованная область на рис.1-3), гипотезу отвергают, если не принадлежит — не отвергают.

Для краткости можно записать и так:

| K | 0,05, то аргументов недостаточно, чтобы отвергнуть нулевую гипотезу. Не отвергая нулевую гипотезу, можно заявить, что результаты не значимы на 5% уровне. Данное заключение не означает, что нулевая гипотеза истинна, просто недостаточно аргументов (возможно, маленький объем выборки), чтобы ее отвергнуть.

Уровень значимости (т.е. выбранная «граница отсечки») 5% задается произвольно. На уровне 5% можно отвергнуть нулевую гипотезу, когда она верна. Если это может привести к серьезным последствиям, необходимо потребовать более веских аргументов, прежде чем отвергнуть нулевую гипотезу, например, выбрать значение = 0,01 (или 0,001).

Определение результата только как значимого на определенном уровне граничного значения (например 0, 05) может ввести в заблуждение. Например, если р = 0,04, то нулевую гипотезу отвергаем, но если р = 0,06, то ее не отвергли бы. Действительно ли они различны? Мы рекомендуем всегда указывать точное значение р, обычно получаемое путем компьютерного анализа.

Проверка гипотез против доверительных интервалов

Доверительные интервалы и проверка гипотез тесно связаны. Первоначальная цель проверки гипотезы состоит в том, чтобы принять решение и предоставить точное значение р.

Доверительный интервал (ДИ) количественно определяет изучаемый эффект (например, разницу в средних) и дает возможность оценить значение результатов. ДИ предоставляют интервал вероятных значений для истинного эффекта, поэтому его также можно использовать для принятия решения даже без точных значений р.

Например, если бы гипотетическое значение для данного эффекта (например, значение, равное нулю) находилось вне 95% ДИ, можно было бы счесть гипотетическое значение неправдоподобным и отвергнуть . В этом случае станет известно, что р < 0,05, но не станет известно его точное значение

Проверка гипотезы

Проверка гипотезы – это систематический способ отбора отдельных примеров из группы с целью определения ожидаемого поведения всей группы. Проверка гипотезы является неотъемлемой частью инференциальной статистики. Она также известна как проверка достоверности, поскольку достоверность (или ее отсутствие) обычно является определяющим показателем того, принимается настоящая гипотеза или нет.

Гипотеза аналогична теории

Если Вы считаете, что что-то может быть правдой, но еще не имеет окончательного доказательства, это считается теорией до тех пор, пока не будут предоставлены доказательства. Превращение теорий в общепринятые утверждения и факты лежит в основе научного метода, состоящего из основных 4 шагов:

Рис. 1. Четыре основных шага, лежащих в основе научного метода

Как и многие часто используемые статистические инструменты, A/B тестирование и многовариантное тестирование – это формы проверки гипотез, поэтому важно начать тестирование своего сайта с создания сильной гипотезы.

Например, если у Вас есть основания полагать, что цвет Вашей страницы перехода может оказать негативное влияние на уровень конверсии, Ваша гипотеза может звучать следующим образом:

«Изменение цвета страницы перехода с черного на синий окажет статистически значимое влияние на уровень конверсии».

Как только эта гипотеза сформулирована, нужно запустить ее проверку, чтобы доказать (или опровергнуть) ее. Крайне важно включить слова «статистически значимый» в гипотезу, поскольку это подразумевает достаточную выборку.

Рис. 2. Нулевая гипотеза и альтернативная гипотеза

Нулевая гипотеза

Слово «ноль» происходит от латинского слова nullus, что в переводе означает «ничего». Возможно, это определение полезно для более полного понимания термина, часто вызывающего вопросы. Во время тестирования Ваша нулевая гипотеза заключается в том, что ничто не изменится или не улучшится между двумя группами данных. Это не то, что Вы хотите доказать, а, скорее, то, что Вы хотите опровергнуть. Например, Ваша нулевая гипотеза может заключаться в том, что изменение цвета страницы перехода не повлияет на уровень конверсии.

Альтернативная гипотеза

Альтернативная гипотеза также известна как экспериментальная или «исследовательская» гипотеза – именно это Вы пытаетесь доказать посредством проверки. Альтернативная гипотеза противоположна нулевой гипотезе. В нашем примере с изменением цвета страницы перехода гипотетическое утверждение на самом деле является альтернативной гипотезой. Вам нужно опровергнуть свою нулевую гипотезу, чтобы доказать альтернативную.

Аналогия, которая часто используется для описания проверки гипотез, выглядит следующим образом: подсудимый считается невиновным до тех пор, пока его вина не будет доказана. Это эквивалентно тому, что нулевая гипотеза считается истинной до тех пор, пока не будет доказана ее ложность. В зале суда присяжные решают, есть ли достаточные доказательства, чтобы опровергнуть невиновность подсудимого. В A/B тестировании или многовариантном тестировании тестер устанавливает значение порога p-показателя (например, 0,05 или 5 %) для проверки и определения того, насколько маловероятна нулевая гипотеза, прежде чем ее можно будет уверенно опровергнуть.

Для проверки нулевой гипотезы

1. Понятие нулевой гипотезы.

2. Общие принципы проверки статистических гипотез.

3. Понятие гипотезы в педагогике.

4.1 Понятие нулевой и альтернативной гипотезы

Поскольку статистика как метод исследования имеет дело с данными, в которых интересующие исследователя закономерности искажены различными случайными факторами, большинство статистических вычислений сопровождается проверкой некоторых предположений или гипотез об источнике этих данных.

Статистическая гипотеза – это предположение о свойствах случайных величин или событий, которое мы хотим проверить по имеющимся данным. Примеры статистических гипотез в педагогических исследованиях:

Гипотеза 1. Успеваемость класса стохастически (вероятностно) зависит от уровня обучаемости учащихся.

Гипотеза 2. Усвоение начального курса математики не имеет существенных различий у учащихся, начавших обучение с 6 или 7 лет.

Гипотеза 3. Проблемное обучение в первом классе эффективнее по сравнению с традиционной методикой обучения в отношении общего развития учащихся.

Нулевая гипотеза – это основное проверяемое предположение, которое обычно формулируется как отсутствие различий, отсутствие влияние фактора, отсутствие эффекта, равенство нулю значений выборочных характеристик и т.п. Примером нулевой гипотезы в педагогике является утверждение о том, что различие в результатах выполнения двумя группами учащихся одной и той же контрольной работы вызвано лишь случайными причинами.

Другое проверяемое предположение (не всегда строго противоположное или обратное первому) называется конкурирующей или альтернативной гипотезой. Так, для упомянутого выше примера гипотезы Н в педагогике одна из возможных альтернатив Н1 будет определена как: уровни выполнения работы в двух группах учащихся различны и это различие определяется влиянием неслучайных факторов, например, тех или других методов обучения.

Выдвинутая гипотеза может быть правильной или неправильной, поэ­тому возникает необходимость проверить ее. Так как проверку произво­дят статистическими методами, то данная проверка называется статистической.

Читать еще:  У ип есть уставной капитал

При проверке статистических гипотез возможны ошибки (ошибочные суждения) двух видов:

— можно отвергнуть нулевую гипотезу, когда она на самом деле верна (так называемая ошибка первого рода);

можно принять нулевую гипотезу, когда она на самом деле не верна (так называемая ошибка второго рода).

Ошибка, состоящая в принятии нулевой гипотезы, когда она ложна, качественно отличается от ошибки, состоящей в отвержении гипотезы, когда она истинна. Эта разница очень существенна вследствие того, что различна значимость этих ошибок. Проиллюстрируем вышесказанное на следующем примере.

Пример 1. Процесс производства некоторого медицинского препарата весьма сложен. Несущественные на первый взгляд отклонения от технологии вызывают появление высокотоксичной побочной примеси. Токсичность этой примеси может оказаться столь высокой, что даже такое ее количество, которое не может быть обнаружено при обычном химическом анализе, может оказаться опасным для человека, принимающего это лекарство. В результате, прежде чем выпускать в продажу вновь произведенную партию, ее подвергают исследованию на токсичность биологическими методами. Малые дозы лекарства вводятся некоторому количеству подопытных животных, например, мышей, и результат регистрируют. Если лекарство токсично, то все или почти все животные гибнут. В противном случае норма выживших велика.

Исследование лекарства может привести к одному из возможных способов действия: выпустить партию в продажу (а1), вернуть партию поставщику для доработки или, может быть, для уничтожения (а2).

Ошибки двух видов, связанные с действиями а1 и а2 совершенно различны, различна и важность избегания их. Сначала рассмотрим случай, когда применяется действие а1, в то время когда предпочтительнее а2. Лекарство опасно для пациента, в то время как оно признано безопасным. Ошибка этого вида может вызвать смерть пациентов, употребляющих этот препарат. Это ошибка первого рода, так как нам важнее ее избежать.

Рассмотрим случай когда предпринимается действие а2, в то время когда а1 является более предпочтительным. Это означает, что вследствие неточностей в проведении эксперимента партия нетоксичного лекарства классифицировалась как опасная. Последствия ошибки могут выражаться в финансовом убытке и в увеличении стоимости лекарства. Однако случайное отвержение совершенно безопасного лекарства, очевидно, менее нежелательно, чем, пусть даже изредка происходящие гибели пациентов. Отвержение нетоксичной партии лекарства – ошибка второго рода.

Допустимая вероятность ошибки первого рода (Ркр) может быть равна 5% или 1% (0.05 или 0.01).

Уровень значимости – это вероятность ошибки первого рода при принятии решения (вероятность ошибочного отклонения нулевой гипотезы).

Альтернативные гипотезы принимаются тогда и только тогда, когда опровергается нулевая гипотеза. Это бывает в случаях, когда различия, скажем, в средних арифметических экспериментальной и контрольной групп настолько значимы (статистически достоверны), что риск ошибки отвергнуть нулевую гипотезу и принять альтернативную не превышает одного из трех принятых уровней значимости статистического вывода:

первый уровень — 5% (р=5%); где допускается риск ошибки в выводе в пяти случаях из ста теоретически возможных таких же экспериментов при строго случайном отборе испытуемых для каждого экспе­римента;

второй уровень — 1%, т. е. соответственно допускается риск ошибиться только в одном случае из ста;

третий уровень — 0,1%, т. е. допускается риск ошибить­ся только в одном случае из тысячи.

Последний уровень значимости предъявляет очень высокие требования к обоснованию достоверности результатов экспе­римента и потому редко используется. В педагогических исследованиях, не нуждающихся в очень высоком уровне достоверности, представляется разумным принять 5% уровень значимости.

Статистика критерия (Т) — некоторая функция от исходных данных, по значению которой проверяется нулевая гипотеза. Чаще всего статистика критерия является числовой функцией, но она может быть и любой другой функцией, например, многомерной функцией.

Всякое правило, на основе которого отклоняется или принимается нулевая гипотеза называется критерием для проверки данной гипотезы. Статистический критерий (критерий) – это случайная величина, которая служит для проверки статистических гипотез.

Критическая область – совокупность значений критерия, при котором нулевую гипотезу отвергают. Область принятия нулевой гипотезы (область допустимых значений) – совокупность значений критерия, при котором нулевую гипотезу принимают. При справедливости нулевой гипотезы вероятность того, что статистика критерия попадает в область принятия нулевой гипотезы должна быть равна 1-Ркр.

4.2 Общие принципы проверки статистических гипотез

Процедура проверки нулевой гипотезы в общем случае включает следующие этапы:

1. задается допустимая вероятность ошибки первого рода (Ркр=0,05)

2. выбирается статистика критерия (Т)

3. ищется область допустимых значений

4. по исходным данным вычисляется значение статистики Т

5. если Т (статистика критерия) принадлежит области принятия нулевой гипотезы, то нулевая гипотеза принимается (корректнее говоря, делается заключение, что исходные данные не противоречат нулевой гипотезе), а в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза. Это о сновной принцип проверки всех статистических гипотез.

Обычно первые три этапа выполняют профессиональные математики, а последние два – пользователи для своих частных данных.

В современных статистических пакетах на ЭВМ используются не стандартные уровни значимости, а уровни, подсчитываемые непосредственно в процессе работы с соответствующим статистическим методом. Эти уровни, обозначенные буквой P , могут иметь различное числовое выражение в интервале от 0 до 1, например, 0,7 0,23 0,012. Понятно, что в первых двух случаях полученные уровни значимости слишком велики и говорить о том, что результат значим нельзя. В последнем случае результаты значимы на уровне 12 тысячных. Это достоверный результат.

При проверке статистических гипотез с помощью статистических пакетов, программа выводит на экран вычисленное значение уровня значимости Р и подсказку о возможности принятия или неприятия нулевой гипотезы.

Если вычисленное значение Р превосходит выбранный уровень Ркр,
то принимается нулевая гипотеза, а в противном случае — альтернативная гипотеза. Чем меньше вычисленное значение Р, тем более исходные данные противоречат нулевой гипотезе.

Число степеней свободы у какого-либо параметра определяют как число опы­тов, по которым рассчитан данный параметр, минус количество одинаковых значений, найденных по этим опытам независимо друг от друга.

Величина Ф называется мощностью критерия и представляет собой вероятность отклонения неверной нулевой гипотезы, то есть вероятность правильного решения. Мощность критерия – вероятность попадания критерия в критическую область при условии, что справедлива альтернативная гипотеза. Чем больше Ф, тем вероятность ошибки 2-го рода меньше.

4.3 Понятие гипотезы в педагогике

Гипотеза исследования – методологическая характеристика исследования, научное предположение, выдвигаемой для объяснения какого-либо явления и требующее проверки на опыте для того, чтобы стать достоверным научным знанием. От простого предположения гипотеза отличается рядом признаков. К ним относят:

— соответствие фактам, на основе которых и для обоснования которых она создана

— приложимость к возможно более широкому кругу явлений

В гипотезе органически сливаются два момента: выдвижение некоторого положения и последующее логическое и практическое доказательство.

Педагогическая гипотеза (научное предположение о преимуществе того или иного метода) в процессе статистического анализа переводится на язык статисти­ческой науки и заново формулируется, по меньшей мере, в виде двух статистических гипотез.

Возможны два типа гипотез: первый тип — описа­тельные гипотезы, в которых описываются причины и возможные следствия. Второй тип — объяснительные: в них дается объяснение возможным следствиям из опре­деленных причин, а также характеризуются условия, при которых эти следствия обязательно последуют, т. е. объяс­няется, в силу каких факторов и условий будет данное следствие. Описательные гипотезы не обладают предвидением, а объяснительные обладают таким свойством. Объясни­тельные гипотезы выводят исследователей на предпо­ложения о существовании определенных закономерных связей между явлениями, факторами и условиями.

Гипотезы в педагогических иссле­дованиях могут предполагать, что одно из средств (или группа их) будет более эффективным, чем другие средства. Здесь гипотетически высказывается предположение о сравнительной эффективности средств, способов, методов, форм обучения.

Более высокий уровень гипотетического предсказания состоит в том, что автор исследования высказывает гипотезу о том, что какая-то система мер будет не только лучше другой, но и из ряда возможных систем она кажется оптимальной с точки зрения определенных критериев. Такая гипотеза нуждается в еще более строгом и оттого более развернутом доказательстве.

Источники:

http://businessman.ru/new-nulevaya-gipoteza-v-statistike-primer-proverka-nulevoj-gipotezy.html
http://www.sites.google.com/site/ktnoscience/Home/lecture/l4
http://statistica.ru/theory/proverka-gipotez/
http://o-es.ru/blog/proverka-gipotezy/
http://www.sites.google.com/site/ktnoscience/Home/lecture/l4

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector
×
×
×
×